Access the full text.
Sign up today, get DeepDyve free for 14 days.
References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.
This paper presents a novel robust and autonomous formation control scheme for wheeled mobile robots in the leader-follower formation control framework considering their non-holonomic constraints. In the proposed formation control scheme, the leader robot of the group plans its path of navigation autonomously in a cluttered environment by employing incremental path planning by modified artificial potential field. Then, the follower robots in the group plan their path in order to follow the leader robot by maintaining a particular formation using the separation-bearing (l − Ψ) control. Then the formation control problem has been transformed into a trajectory tracking control problem. The kinematic control component of the tracking controller provides the necessary velocity input for eliminating the non-holonomic constraints, whereas, the sliding mode augmented robust trajectory tracking control component minimises the effects of nonlinearities, model uncertainties, parameter variations, and disturbances. The effectiveness of the proposed control law has been established by simulation studies.
International Journal of Systems, Control and Communications – Inderscience Publishers
Published: Jan 1, 2019
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.