Access the full text.
Sign up today, get DeepDyve free for 14 days.
References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.
This paper presents the evaluation of five wavelets-based denoising schemes in order to select the best possible scheme for denoising bearing vibration signals and dimensionality reduction techniques using artificial neural network (ANN). Vibration signals from four conditions of rolling element bearing (REB) namely normal (N), defect on inner race (IR), defect on ball (B) and defect on outer race (OR) have been denoised using interval-dependent Copyright © 2016 Inderscience Enterprises Ltd. Comparison of denoising schemes and dimensionality reduction techniques 239 denoising scheme, which is the best possible scheme. The denoised signal is subjected to discrete wavelet transform (DWT) to extract 17 statistical features. Principal component analysis (PCA)-based dimensionality reduction technique (DRT) namely PCA alone, Kernel-PCA (KPCA) alone, PCA using SVD and KPCA using SVD have been used for reducing the dimension of the features. It is found that KPCA using SVD resulted in highest prediction accuracy using ANN, making it suitable for effective REB fault diagnosis. [Received 30 November 2015; Revised 17 June 2016; Accepted 20 June 2016] Keywords: vibration signal; wavelet transform; wavelet-based denoising; Kernel-PCA; KPCA; artificial neural network; ANN; SVD. Reference to this paper should be made as follows: Kumar, H.S., Srinivasa Pai1, P., Sriram, N.S.,
International Journal of Manufacturing Research – Inderscience Publishers
Published: Jan 1, 2016
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.