Access the full text.
Sign up today, get DeepDyve free for 14 days.
References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.
Dysarthria is a speech syndrome caused by the neurological damage in motor speech glands. In this paper, a robust frame selection algorithm has been employed to recognise the dysarthria speech with less time consumption. This algorithm determines the more informative frames which in turn reduce the size of feature matrix used for recognising the speech. This method results in a significant reduction in computational complexity without compromising with the word recognition rate (WRR) which may support a real time application. The amalgamation of four prosodic features: Mel frequency cepstral coefficients (MFCCs), Log of energy per frame, differential MFCCs and double differential MFCCs has been used for training and testing the Hidden Markov Models (HMMs) for speech recognition. Several try-outs were performed on the high, medium and low intelligibility audio clips with a vocabulary size of 29 isolated words. The time complexity of the whole system is reduced up to 54.8% with respect to the time taken by the system without implementing RFS. The proposed scheme is gender, speaker and age independent.
International Journal of Signal and Imaging Systems Engineering – Inderscience Publishers
Published: Jan 1, 2017
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.