Access the full text.
Sign up today, get DeepDyve free for 14 days.
References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.
Incremental sheet forming is a potential technology in future manufacturing. However, the surface roughness increases during the process can limit the geometric accuracy and alter the mechanical properties of the product. The paper presents an extensive experimental investigation on the relevance between the surface roughness and sheet thickness using the two points incremental forming and an optical microscopy analysis the microstructure change in the sheet material during forming. Firstly, aluminium alloy sheets with different thickness were formed into a benchmark shape. Then the measurements of sheet thickness and wall angles were carried out to reveal the effects on the surface roughness that is further related to the mechanical properties. Finally, the microstructure of the sheets prior and after forming was investigated under microscope, considering the influence of grain size and clad layer. It is shown that a large wall angle leads to a worse surface finish. However, there was no direct relationship found between sheet thickness and surface roughness. Through the microstructure observation of processing sheets, it is found that the bounding of the clad layer remained intact and the deformation is constrained within the clad layer. [Submitted 19 March 2017; Accepted 7 October 2017]
International Journal of Manufacturing Research – Inderscience Publishers
Published: Jan 1, 2018
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.