Access the full text.
Sign up today, get DeepDyve free for 14 days.
References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.
Detection text detection and extraction from natural scenes (i.e. video or images) can deliver significant information for various applications. To address the issue of text detection, a novel approach for text detection from natural scene image is introduced by developing a joint feature extraction method by considering shape and scale invariant feature transform (SIFT) feature analysis techniques. Shape extraction is improved by applying curvature-based shape analysis model. To construct the feature descriptor, input image is passed through canny edge detection process in which gradients are computed of each image. Later, we perform SIFT analysis and SIFT-based feature matching to formulate the SIFT feature descriptor. Finally, these two descriptors are merged together, and a combined descriptor is presented for text detection. Experimental study is carried out by considering benchmark ICDAR 2003, 2013 and 2015 data sets. Experimental study shows that proposed approach outperforms when compared with stateof-art text detection model. Keywords: connected components; natural scene; shape analysis; SIFT analysis; text detection. Reference to this paper should be made as follows: Segu, R. and Suresh, K. (2017) `Joint feature extraction technique for text detection from natural scene image', Int. J. Signal and Imaging Systems Engineering, Vol. 10, Nos. 1/2, pp.1421.
International Journal of Signal and Imaging Systems Engineering – Inderscience Publishers
Published: Jan 1, 2017
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.