Access the full text.
Sign up today, get DeepDyve free for 14 days.
References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.
Histogram sparseness is an unexpected characteristic by most of the lossless compression algorithms that have been designed mainly to process continuous-tone images. The compression efficiency of most of lossless image encoders is severely affected when handling sparse histogram images. In this paper, we presented an analysis of the histogram sparseness impact on lossless image compression standards and a new preprocessing technique was proposed in order to improve the compression performance for sparse histogram images. The proposed technique takes advantage of the high likelihood between neighboring image blocks. For each image block, the proposed method associates the most reduced set representing its active symbols and makes the histogram dense. This technique proved to be efficient without applying any modification to the basic code of the state-of the art lossless image compression techniques. We showed experimentally that the proposed method outperforms JPEG-LS, CALIC and JPEG 2000 and achieves lower bitrates.
International Journal of Signal and Imaging Systems Engineering – Inderscience Publishers
Published: Jan 1, 2020
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.