Access the full text.
Sign up today, get DeepDyve free for 14 days.
References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.
Kernel based machine learning such as Support Vector Machines (SVMs) have proven to be powerful for many database classification problems, especially for Content Based Image Retrieval systems (CBIR). Multiple Kernel Learning (MKL) approach was recently proposed to improve kernel based classification results. MKL approach depends essentially on the used kernels and the computation of the optimal weight coefficients. However in case of heterogeneous databases, the complexity to treat and classify images provides great difficultly to define and determine optimal kernel weights. We propose in this paper an original kernel weighting method, which is intended for Multiple Kernel based SVM classification. Depending on the relevance of kernel training rates, the proposed method allows us to ensure better classification accuracy and significantly less computation time.
International Journal of Signal and Imaging Systems Engineering – Inderscience Publishers
Published: Jan 1, 2011
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.