Access the full text.
Sign up today, get DeepDyve free for 14 days.
References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.
Tremor is unwanted movement of body part. Tremor model estimations are employed in intelligent tremor prediction and compensation scheme. One way of modelling Parkinsonian tremor is the analysis-synthesis approach, in which theoretically guessed properties of the individual parts are combined mathematically. However, this approach has limited success in predicting certain tremor characteristics. The second method uses different measures of the tremor (frequency, amplitude, effect of loading, etc.) in order to infer the underlying phenomena. Electromyogram (EMG) being a related physiological event, is included in the parameter domain, which helps to estimate certain tremor characteristics. An artificial neural network based study of tremor in Parkinson’s disease and its compensation technique is discussed here.
International Journal of Signal and Imaging Systems Engineering – Inderscience Publishers
Published: Jan 1, 2012
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.