Access the full text.
Sign up today, get DeepDyve free for 14 days.
References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.
Design of optimal distributed controllers with a priori assigned localisation constraints is a difficult problem. Alternatively, one can ask the following question: given a localised distributed exponentially stabilising controller, is it inversely optimal with respect to some cost functional? We study this problem for linear spatially invariant systems and establish a frequency domain criterion for inverse optimality (in the LQR sense). We utilise this criterion to separate localised controllers that are never optimal from localised controllers that are optimal. For the latter, we provide examples to demonstrate optimality with respect to physically appealing cost functionals. These are characterised by state penalties that are not fully decentralised and they provide insight about spatial extent of the LQR weights that lead to localised controllers.
International Journal of Systems, Control and Communications – Inderscience Publishers
Published: Jan 1, 2010
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.