Access the full text.
Sign up today, get DeepDyve free for 14 days.
References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.
Path planning in a completely known environment has been experienced various ways. However, in real world, most humanoid robots work in unknown environments. Robots' path planning by artificial potential field and fuzzy artificial potential field methods are very popular in the field of robotics navigation. However, by default humanoid robots lack range sensors; thus, traditional artificial potential field approaches needs to adopt themselves to these limitations. This paper investigates two different approaches for path planning of a humanoid robot in an unknown environment using fuzzy artificial potential (FAP) method. In the first approach, the direction of the moving robot is derived from fuzzified artificial potential field whereas in the second one, the direction of the robot is extracted from some linguistic rules that are inspired from artificial potential field. These two introduced trajectory design approaches are validated though some software and hardware in the loop simulations and the experimental results demonstrate the superiority of the proposed approaches in humanoid robot real-time trajectory planning problems. Keywords: humanoid robots; path planning; unknown environment; artificial potential field. Reference to this paper should be made as follows: Fakoor, M., Kosari, A. and Jafarzadeh, M. (2015) `Revision on fuzzy artificial potential field for
International Journal of Advanced Mechatronic Systems – Inderscience Publishers
Published: Jan 1, 2015
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.