Access the full text.
Sign up today, get DeepDyve free for 14 days.
References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.
This paper investigates the problem of robust H∞ control for two-dimensional (2D) discrete state delay systems described by the Fornasini-Marchesini (FM) second model. The parameter uncertainties are supposed to be norm-bounded. Our attention is focused on designing H∞ state feedback controllers guaranteeing the asymptotic stability and H∞ performance of the corresponding closed-loop system. A sufficient condition for H∞ disturbance attenuation performance for the nominal 2D discrete state delay system is first obtained. Next, a stabilising state feedback controller is designed such that the resulting closed-loop system is asymptotically stable and achieves a prescribed H∞ disturbance attenuation level. Furthermore, the resulting criteria are extended to robust H∞ control of the uncertain 2D state-delay system. Two examples are given to demonstrate the advantages of the proposed methods.
International Journal of Systems, Control and Communications – Inderscience Publishers
Published: Jan 1, 2019
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.