Access the full text.
Sign up today, get DeepDyve free for 14 days.
References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.
Pedestrian detection is a significant problem in infrared (IR) images that find varieties of applications in defense systems. The performance of the state-of-the-art of pedestrian detection methods in IR images still have abundant space for improvement towards accuracy. In this paper, a three-level filtering-based pedestrian block detection method is proposed. In addition, a rotation and scale invariant structure element descriptor (RSSED) is proposed for pedestrian detection in infrared (IR) images. To extract RSSED features, the pedestrian block detection result is encoded using local binary pattern (LBP). The LBP encoded image is quantised adaptively to four levels. Further, the proposed RSSED is used to generate the feature descriptor from the quantised image. Finally, support vector machine (SVM) is used to classify the objects in given IR image into pedestrian and non-pedestrian. The experimental results demonstrate that the proposed method performs effectively in pedestrian detection than the other methods.
International Journal of Signal and Imaging Systems Engineering – Inderscience Publishers
Published: Jan 1, 2017
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.