Access the full text.
Sign up today, get DeepDyve free for 14 days.
References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.
This paper proposes two speech parameterisation techniques for noise-robust speaker recognition: the normalised gammachirp cepstral coefficients (NGCC) and the perceptual linear predictive normalised gammachirp (PLPnGc). These techniques employ a biologically inspired auditory model that simulates the cochlea spectral behaviour. In an automatic speaker recognition (ASR) system, we consider the Gaussian mixture model-universal background model (GMM-UBM) for speaker modelling. The performances are evaluated in clean and noisy environments using Timit, Aurora, and Demand databases. The experimental results in noisy environments showed that the biologically inspired feature extraction techniques give a better recognition rate than state-of-the-art methods.
International Journal of Signal and Imaging Systems Engineering – Inderscience Publishers
Published: Jan 1, 2020
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.