Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

System dynamics analysis of energy usage: case studies in automotive manufacturing

System dynamics analysis of energy usage: case studies in automotive manufacturing Our life is strongly linked with the usage of natural resources. With increase in world population and welfare there is an increasing global demand for raw material. Energy is a necessity in everyday life and is often generated using non-renewable natural resources which are finite. Manufacturing is one of the largest energy and material resource consumers. There is great concern about minimising consumption of energy in manufacturing industry to sustain the natural carrying capacity of the ecosystem. This is one of the challenges in today’s industrial world. The paper presents the application of system dynamics theory for modelling and simulation of complex manufacturing processes. The simulations help to understand the intricate nature of the interrelation of process parameter and to make sound decision about minimising the energy losses. Two case studies are presented, one in cylinder head casting processes and the other in crankshaft machining. The developed models provide an insight into how to select critical operations and to identify the effect of various parameters on the energy consumption. Also, the models help to understand how changes of parameters over time affect the behaviour of energy changes. The outcome of this research enables the company to identify potential avenues to minimise energy usage and offers a decision support tool. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png International Journal of Manufacturing Research Inderscience Publishers

System dynamics analysis of energy usage: case studies in automotive manufacturing

Loading next page...
 
/lp/inderscience-publishers/system-dynamics-analysis-of-energy-usage-case-studies-in-automotive-NVv0zcF39E

References (30)

Publisher
Inderscience Publishers
Copyright
Copyright © Inderscience Enterprises Ltd. All rights reserved
ISSN
1750-0591
eISSN
1750-0605
DOI
10.1504/IJMR.2014.062440
Publisher site
See Article on Publisher Site

Abstract

Our life is strongly linked with the usage of natural resources. With increase in world population and welfare there is an increasing global demand for raw material. Energy is a necessity in everyday life and is often generated using non-renewable natural resources which are finite. Manufacturing is one of the largest energy and material resource consumers. There is great concern about minimising consumption of energy in manufacturing industry to sustain the natural carrying capacity of the ecosystem. This is one of the challenges in today’s industrial world. The paper presents the application of system dynamics theory for modelling and simulation of complex manufacturing processes. The simulations help to understand the intricate nature of the interrelation of process parameter and to make sound decision about minimising the energy losses. Two case studies are presented, one in cylinder head casting processes and the other in crankshaft machining. The developed models provide an insight into how to select critical operations and to identify the effect of various parameters on the energy consumption. Also, the models help to understand how changes of parameters over time affect the behaviour of energy changes. The outcome of this research enables the company to identify potential avenues to minimise energy usage and offers a decision support tool.

Journal

International Journal of Manufacturing ResearchInderscience Publishers

Published: Jan 1, 2014

There are no references for this article.