Access the full text.
Sign up today, get DeepDyve free for 14 days.
A. Riess, A. Filippenko, P. Challis, A. Clocchiatti, A. Diercks, P. Garnavich, R. Gilliland, C. Hogan, S. Jha, R. Kirshner, B. Leibundgut, M. Phillips, D. Reiss, B. Schmidt, R. Schommer, R. Smith, R. Smith, J. Spyromilio, C. Stubbs, N. Suntzeff, J. Tonry (1998)
Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological ConstantThe Astronomical Journal, 116
E. Piedipalumbo, E. Moglie, M. Laurentis, P. Scudellaro (2013)
High Redshift Investigation On The Dark Energy Equation of StateMonthly Notices of the Royal Astronomical Society, 441
D. Huterer, D. Shafer (2017)
Dark energy two decades after: observables, probes, consistency testsReports on Progress in Physics, 81
H. Jassal, J. Bagla, T. Padmanabhan (2006)
Understanding the origin of CMB constraints on dark energyMonthly Notices of the Royal Astronomical Society, 405
T. Padmanabhan (2002)
ACCELERATED EXPANSION OF THE UNIVERSE DRIVEN BY TACHYONIC MATTERPhysical Review D, 66
V. Eke, S. Cole, C. Frenk (1996)
Cluster evolution as a diagnostic for ΩMonthly Notices of the Royal Astronomical Society, 282
L. Abramo, R. Batista, L. Liberato, R. Rosenfeld (2007)
Structure formation in the presence of dark energy perturbationsJournal of Cosmology and Astroparticle Physics, 2007
I. Achitouv (2017)
An improved model of redshift-space distortions around voids: application to quintessence dark energyPhysical Review D, 96
J. Barrow, P. Saich (1993)
Growth of large-scale structure with a cosmological constantMonthly Notices of the Royal Astronomical Society, 262
Luis Abramo, R. Batista, L. Liberato, Rogerio Rosenfeld (2007)
Dynamical mutation of dark energyPhysical Review D, 77
M. Tsizh, B. Novosyadlyj (2015)
Dynamics of dark energy in collapsing halo of dark matterarXiv: Cosmology and Nongalactic Astrophysics
P. Peebles (1984)
Tests of Cosmological Models Constrained by InflationThe Astrophysical Journal, 284
Manvendra Rajvanshi, J.S. Bagla (2020)
Erratum: Nonlinear spherical perturbations in quintessence models of dark energyJournal of Cosmology and Astroparticle Physics, 2020
Thanu Padmanabhan (2007)
Dark energy and gravityGeneral Relativity and Gravitation, 40
Chia-Chun Chang, Wolung Lee, K. Ng (2017)
Spherical Collapse Models with Clustered Dark EnergyarXiv: Cosmology and Nongalactic Astrophysics
D. Weinberg, M. Mortonson, D. Eisenstein, C. Hirata, A. Riess, E. Rozo (2012)
Observational probes of cosmic accelerationPhysics Reports, 530
S. Unnikrishnan, H. Jassal, T. Seshadri (2008)
Scalar field dark energy perturbations and their scale dependencePhysical Review D, 78
B. Schmidt, N. Suntzeff, M. Phillips, R. Schommer, A. Clocchiatti, R. Kirshner, P. Garnavich, P. Challis, B. Leibundgut, J. Spyromilio, A. Riess, A. Filippenko, M. Hamuy, R. Smith, C. Hogan, C. Stubbs, A. Diercks, D. Reiss, R. Gilliland, J. Tonry, J. Maza, A. Dressler, J. Walsh, R. Ciardullo (1998)
The High-Z Supernova Search: Measuring Cosmic Deceleration and Global Curvature of the Universe Using Type Ia SupernovaeThe Astrophysical Journal, 507
A. Melchiorri, A. Melchiorri, P. Ade, P. Bernardis, J. Bock, J. Bock, J. Borrill, J. Borrill, A. Boscaleri, B. Crill, G. Troia, P. Farese, P. Ferreira, P. Ferreira, P. Ferreira, K. Ganga, K. Ganga, G. Gasperis, M. Giacometti, V. Hristov, A. Jaffe, A. Lange, S. Masi, P. Mauskopf, L. Miglio, L. Miglio, C. Netterfield, E. Pascale, F. Piacentini, G. Romeo, J. Ruhl, N. Vittorio (1999)
A Measurement of Ω from the North American Test Flight of BoomerangThe Astrophysical Journal Letters, 536
H. Bondi (1947)
Spherically Symmetrical Models in General RelativityGeneral Relativity and Gravitation, 31
S. Weinberg (1989)
The Cosmological Constant ProblemReviews of Modern Physics, 61
S. Tsujikawa (2013)
Quintessence: a reviewClassical and Quantum Gravity, 30
S. Dhawan, A. Goobar, E. Mörtsell, R. Amanullah, U. Feindt (2017)
Narrowing down the possible explanations of cosmic acceleration with geometric probesJournal of Cosmology and Astroparticle Physics, 2017
H. Jassal (2009)
Comparison of perturbations in fluid and scalar field models of dark energyPhysical Review D, 79
D. Herrera, I. Waga, S. Jor'as (2017)
Calculation of the critical overdensity in the spherical-collapse approximationPhysical Review D, 95
R. Batista, V. Marra (2017)
Clustering dark energy and halo abundancesJournal of Cosmology and Astroparticle Physics, 2017
J. Bagla (1996)
Observational Constraints on Ω and H 0 .
A. Walker (1935)
ON RIEMANNTAN SPACES WITH SPHERICAL SYMMETRY ABOUT A LINE, AND THE CONDITIONS FOR ISOTROPY IN GENJ RELATIVITYQuarterly Journal of Mathematics, 1
J. Rekier, A. Fuzfa, I. Cordero-Carrión (2015)
Nonlinear cosmological spherical collapse of quintessencePhysical Review D, 93
S. White, J. Navarro, A. Evrard, C. Frenk (1993)
The baryon content of galaxy clusters: a challenge to cosmological orthodoxyNature, 366
R. Tolman (1934)
Effect of Inhomogeneity on Cosmological Models.Proceedings of the National Academy of Sciences of the United States of America, 20 3
Gong-Bo Zhao, M. Raveri, L. Pogosian, Yuting Wang, R. Crittenden, Will Handley, W. Percival, F. Beutler, J. Brinkmann, C. Chuang, A. Cuesta, D. Eisenstein, F. Kitaura, K. Koyama, B. L’Huillier, R. Nichol, M. Pieri, Sergio Rodríguez-Torres, A. Ross, G. Rossi, A. Sánchez, A. Shafieloo, J. Tinker, R. Tojeiro, J. Vázquez, Hanyu Zhang (2017)
Dynamical dark energy in light of the latest observationsNature Astronomy, 1
S. Tian, Shuo Cao, Zong-hong Zhu (2017)
The Dynamics of Inhomogeneous Dark EnergyThe Astrophysical Journal, 841
J. Ostriker, P. Steinhardt (1995)
The observational case for a low-density Universe with a non-zero cosmological constantNature, 377
K. Bamba, S. Capozziello, S. Nojiri, S. Odintsov (2012)
Dark energy cosmology: the equivalent description via different theoretical models and cosmography testsAstrophysics and Space Science, 342
Irit Maor, O. Lahav (2005)
On virialization with dark energyJournal of Cosmology and Astroparticle Physics, 2005
Z. Roupas, M. Axenides, George Georgiou, E. Saridakis (2013)
Galaxy clusters and structure formation in quintessence versus phantom dark energy universePhysical Review D, 89
S. Vagnozzi, S. Dhawan, M. Gerbino, K. Freese, A. Goobar, O. Mena (2018)
Constraints on the sum of the neutrino masses in dynamical dark energy models with w(z)≥−1 are tighter than those obtained in ΛCDMPhysical Review D
S. Perlmutter, S. Perlmutter, G. Aldering, G. Goldhaber, G. Goldhaber, R. Knop, P. Nugent, P. Castro, P. Castro, S. Deustua, S. Fabbro, S. Fabbro, A. Goobar, A. Goobar, D. Groom, I. Hook, I. Hook, A. Kim, A. Kim, A. Kim, M. Kim, Julia Lee, Julia Lee, N. Nunes, N. Nunes, R. Pain, R. Pain, C. Pennypacker, C. Pennypacker, R. Quimby, C. Lidman, R. Ellis, M. Irwin, R. McMahon, P. Ruiz-Lapuente, N. Walton, B. Schaefer, B. Boyle, A. Filippenko, T. Matheson, A. Fruchter, N. Panagia, N. Panagia, H. Newberg, W. Couch (1998)
Measurements of Ω and Λ from 42 High-Redshift SupernovaeThe Astrophysical Journal, 517
D. Lynden-Bell, J. Bičák (2016)
Pressure in Lemaître–Tolman–Bondi solutions and cosmologiesClassical and Quantum Gravity, 33
L. Abramo, R. Batista, L. Liberato, R. Rosenfeld (2008)
Physical approximations for the nonlinear evolution of perturbations in inhomogeneous dark energy scenariosPhysical Review D, 79
P. Creminelli, G. D’Amico, J. Noreña, L. Senatore, F. Vernizzi (2009)
Spherical collapse in quintessence models with zero speed of soundJournal of Cosmology and Astroparticle Physics, 2010
A. Friedman (1922)
Über die Krümmung des RaumesZeitschrift für Physik, 10
D. Spergel, L. Verde, H. Peiris, E. Komatsu, M. Nolta, C. Bennett, M. Halpern, G. Hinshaw, N. Jarosik, A. Kogut, M. Limon, S. Meyer, L. Page, G. Tucker, J. Weiland, Edward Wollack, E. Princeton, Nasa Gsfc, Ubc, U. Chicaco, Brown, Ssai, Ucla (2003)
First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Determination of Cosmological ParametersThe Astrophysical Journal Supplement Series, 148
V. Eke, S. Cole, C. Frenk (1996)
Using the evolution of clusters to constrain OmegaMonthly Notices of the Royal Astronomical Society, 282
H. Robertson (1935)
Kinematics and world-structure
O. Lahav, P. Lilje, J. Primack, M. Rees (1991)
Dynamical effects of the cosmological constant.Monthly Notices of the Royal Astronomical Society, 251
Georges Lemaître (2013)
Republication of: A homogeneous universe of constant mass and increasing radius accounting for the radial velocity of extra-galactic nebulaeGeneral Relativity and Gravitation, 45
S. Hotchkiss, S. Nadathur, S. Gottlöber, I. Iliev, A. Knebe, W. Watson, G. Yepes (2014)
The Jubilee ISW Project - II. Observed and simulated imprints of voids and superclusters on the cosmic microwave backgroundMonthly Notices of the Royal Astronomical Society, 446
(2016)
Planck 2015 results
L. Amendola, S. Tsujikawa (2018)
Dark Energy: Theory and Observations
Ashutosh Tripathi, Ashutosh Tripathi, Archana Sangwan, H. Jassal (2016)
Dark energy equation of state parameter and its evolution at low redshiftJournal of Cosmology and Astroparticle Physics, 2017
R. Caldwell, R. Dave, P. Steinhardt (1997)
Cosmological imprint of an energy component with general equation of statePhysical Review Letters, 80
J. Bagla, T. Padmanabhan, J. Narlikar (1995)
Crisis in cosmology: Observational constraints on Omega and H, 18
V. Marra, Mikko Paakkonen (2011)
Exact spherically-symmetric inhomogeneous model with n perfect fluidsJournal of Cosmology and Astroparticle Physics, 2012
David Jones, D. Scolnic, A. Riess, A. Riess, A. Rest, A. Rest, R. Kirshner, E. Berger, R. Kessler, Yen-Chen Pan, R. Foley, R. Chornock, C. Ortega, P. Challis, W. Burgett, K. Chambers, P. Draper, H. Flewelling, M. Huber, N. Kaiser, R. Kudritzki, N. Metcalfe, J. Tonry, R. Wainscoat, C. Waters, E. Gall, R. Kotak, M. McCrum, S. Smartt, K. Smith (2017)
Measuring Dark Energy Properties with Photometrically Classified Pan-STARRS Supernovae. II. Cosmological ParametersThe Astrophysical Journal, 857
R. Adam, P. Ade, N. Aghanim, M. Arnaud, M. Ashdown, J. Aumont, C. Baccigalupi, A. Banday, R. Barreiro, N. Bartolo, E. Battaner, K. Benabed, A. Benoit, A. Benoit-Lévy, J. Bernard, M. Bersanelli, B. Bertincourt, P. Bielewicz, J. Bock, L. Bonavera, J. Bond, J. Borrill, F. Bouchet, F. Boulanger, M. Bucher, C. Burigana, E. Calabrese, J. Cardoso, A. Catalano, A. Challinor, A. Chamballu, H. Chiang, P. Christensen, D. Clements, S. Colombi, L. Colombo, C. Combet, F. Couchot, A. Coulais, B. Crill, A. Curto, F. Cuttaia, L. Danese, R. Davies, R. Davis, P. Bernardis, A. Rosa, G. Zotti, J. Delabrouille, J. Delouis, F. Désert, J. Diego, H. Dole, S. Donzelli, O. Doré, M. Douspis, A. Ducout, X. Dupac, G. Efstathiou, F. Elsner, T. Ensslin, H. Eriksen, E. Falgarone, J. Fergusson, F. Finelli, O. Forni, M. Frailis, A. Fraisse, E. Franceschi, A. Frejsel, S. Galeotta, S. Galli, K. Ganga, T. Ghosh, M. Giard, Y. Giraud-Héraud, E. Gjerløw, J. González-Nuevo, K. Górski, S. Gratton, A. Gruppuso, J. Gudmundsson, F. Hansen, D. Hanson, D. Harrison, S. Henrot-Versillé, D. Herranz, S. Hildebrandt, E. Hivon, M. Hobson, W. Holmes, A. Hornstrup, W. Hovest, K. Huffenberger, G. Hurier, A. Jaffe, T. Jaffe, W. Jones, M. Juvela, E. Keihänen, R. Keskitalo, T. Kisner, R. Kneissl, J. Knoche, M. Kunz, H. Kurki-Suonio, G. Lagache, J. Lamarre, A. Lasenby, M. Lattanzi, C. Lawrence, M. Jeune, J. Leahy, E. Lellouch, R. Leonardi, J. Lesgourgues, F. Levrier, M. Liguori, P. Lilje, M. Linden-Vørnle, M. López-Caniego, P. Lubin, J. Macías-Pérez, G. Maggio, D. Maino, N. Mandolesi, A. Mangilli, M. Maris, P. Martin, E. Martínez-González, S. Masi, S. Matarrese, P. McGehee, A. Melchiorri, L. Mendes, A. Mennella, M. Migliaccio, S. Mitra, M. Miville-Deschênes, A. Moneti, L. Montier, R. Moreno, G. Morgante, D. Mortlock, A. Moss, S. Mottet, D. Munshi, J. Murphy, P. Naselsky, F. Nati, P. Natoli, C. Netterfield, H. Nørgaard-Nielsen, F. Noviello, D. Novikov, I. Novikov, C. Oxborrow, F. Paci, L. Pagano, F. Pajot, D. Paoletti, F. Pasian, G. Patanchon, T. Pearson, O. Perdereau, L. Perotto, F. Perrotta, V. Pettorino, F. Piacentini, M. Piat, E. Pierpaoli, D. Pietrobon, S. Plaszczynski, E. Pointecouteau, G. Polenta, G. Pratt, G. Prezeau, S. Prunet, J. Puget, J. Rachen, M. Reinecke, M. Remazeilles, C. Renault, A. Renzi, I. Ristorcelli, G. Rocha, C. Rosset, M. Rossetti, G. Roudier, B. Rusholme, M. Sandri, D. Santos, A. Sauvé, M. Savelainen, G. Savini, D. Scott, M. Seiffert, E. Shellard, L. Spencer, V. Stolyarov, R. Stompor, R. Sudiwala, D. Sutton, A. Suur-Uski, J. Sygnet, J. Tauber, L. Terenzi, L. Toffolatti, M. Tomasi, M. Tristram, M. Tucci, J. Tuovinen, L. Valenziano, J. Valiviita, B. Tent, L. Vibert, P. Vielva, F. Villa, L. Wade, B. Wandelt, R. Watson, I. Wehus, D. Yvon, A. Zacchei, A. Zonca (2016)
Planck2015 resultsAstronomy & Astrophysics, 594
S. Anselmi, G. Ballesteros, M. Pietroni (2011)
Non-linear dark energy clusteringJournal of Cosmology and Astroparticle Physics, 2011
G. Ballesteros, J. Lesgourgues (2010)
Dark energy with non-adiabatic sound speed: initial conditions and detectabilityJournal of Cosmology and Astroparticle Physics, 2010
J. Gunn, J. Gott (1972)
On the Infall of Matter into Clusters of Galaxies and Some Effects on Their EvolutionThe Astrophysical Journal, 176
C. Fidler, T. Tram, Cornelius Rampf, R. Crittenden, K. Koyama, D. Wands (2016)
Relativistic interpretation of Newtonian simulations for cosmic structure formationJournal of Cosmology and Astroparticle Physics, 2016
A. Friedman (1999)
On the Curvature of SpaceGeneral Relativity and Gravitation, 31
G. Efstathiou, W. Sutherland, S. Maddox (1990)
The cosmological constant and cold dark matterNature, 348
Observations have confirmed the accelerated expansion of the universe. The accelerated expansion can be modelled by invoking a cosmological constant or a dynamical model of dark energy. A key difference between these models is that the equation of state parameter w for dark energy differs from 1 in dynamical dark energy (DDE) models. Further, the equation of state parameter is not constant for a general DDE model. Such differences can be probed using the variation of scale factor with time by measuring distances. Another significant difference between the cosmological constant and DDE models is that the latter must cluster. Linear perturbation analysis indicates that perturbations in quintessence models of dark energy do not grow to have a significant amplitude at small length scales. In this paper we study the response of quintessence dark energy to non-linear perturbations in dark matter. We use a fully relativistic model for spherically symmetric perturbations. In this study we focus on thawing models. We find that in response to non-linear perturbations in dark matter, dark energy perturbations grow at a faster rate than expected in linear perturbation theory. We find that dark energy perturbation remains localised and does not diffuse out to larger scales. The dominant drivers of the evolution of dark energy perturbations are the local Hubble flow and a supression of gradients of the scalar field. We also find that the equation of state parameter w changes in response to perturbations in dark matter such that it also becomes a function of position. The variation of w in space is correlated with density contrast for matter. Variation of w and perturbations in dark energy are more pronounced in response to large scale perturbations in matter while the dependence on the amplitude of matter perturbations is much weaker.
Journal of Cosmology and Astroparticle Physics – IOP Publishing
Published: Jun 1, 2018
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.