Access the full text.
Sign up today, get DeepDyve free for 14 days.
L. Zondler, L. Miller-Fleming, L. Miller-Fleming, M. Repici, S. Gonçalves, S. Tenreiro, Rita Rosado-Ramos, Cristine Betzer, K. Straatman, P. Jensen, F. Giorgini, T. Outeiro, T. Outeiro (2014)
DJ-1 interactions with α-synuclein attenuate aggregation and cellular toxicity in models of Parkinson's diseaseCell Death & Disease, 5
Shanya Jiang, N. Dupont, Eliseo Castillo, V. Deretic (2013)
Secretory versus Degradative Autophagy: Unconventional Secretion of Inflammatory MediatorsJournal of Innate Immunity, 5
M. Nalls, C. Blauwendraat, C. Vallerga, K. Heilbron, S. Bandres-Ciga, Diana Chang, M. Tan, D. Kia, A. Noyce, Angli Xue, J. Bras, E. Young, R. Coelln, J. Simón-Sánchez, C. Schulte, M. Sharma, L. Krohn, L. Pihlstrøm, A. Siitonen, H. Iwaki, H. Leonard, F. Faghri, J. Gibbs, D. Hernandez, Sonja Scholz, J. Botía, Miguel Martínez, J. Corvol, S. Lesage, J. Jankovic, L. Shulman, P. Tienari, K. Majamaa, M. Toft, A. Brice, Jian Yang, Z. Gan-Or, T. Gasser, P. Heutink, J. Shulman, N. Wood, D. Hinds, J. Hardy, H. Morris, J. Gratten, P. Visscher, R. Graham, A. Singleton (2018)
Parkinson’s disease genetics: identifying novel risk loci, providing causal insights and improving estimates of heritable riskbioRxiv
Lukas Huber, S. Pimplikar, lkka Virta, ino Zerial (1993)
Rab8, a small GTPase involved in vesicular traffic between the TGN and the basolateral plasma membraneThe Journal of Cell Biology, 123
Yan Zhen, H. Stenmark (2015)
Cellular functions of Rab GTPases at a glanceJournal of Cell Science, 128
Y. Chen, C. Holcomb, H. Moore (1993)
Expression and localization of two low molecular weight GTP-binding proteins, Rab8 and Rab10, by epitope tag.Proceedings of the National Academy of Sciences of the United States of America, 90 14
Guowei Yin, Tomás Fonseca, Sibylle Eisbach, Ane Anduaga, C. Breda, Maria Orcellet, É. Szegõ, P. Guerreiro, D. Lázaro, G. Braus, C. Fernández, C. Griesinger, S. Becker, R. Goody, A. Itzen, F. Giorgini, T. Outeiro, M. Zweckstetter (2014)
α-Synuclein interacts with the switch region of Rab8a in a Ser129 phosphorylation-dependent mannerNeurobiology of Disease, 70
Gregor Lotz, A. Weiss (2013)
Immuno-based detection assays to quantify distinct mutant huntingtin conformations in biological samples.Methods in molecular biology, 1017
P. Richards, C. Didszun, S. Campesan, A. Simpson, B. Horley, K. Young, P. Glynn, K. Cain, C. Kyriacou, F. Giorgini, P. Nicotera, P. Nicotera (2011)
Dendritic spine loss and neurodegeneration is rescued by Rab11 in models of Huntington's diseaseCell Death and Differentiation, 18
F. Maekawa, T. Tsuboi, L. Pellerin (2009)
Regulation of the intracellular distribution, cell surface expression, and protein levels of AMPA receptor GluR2 subunits by the monocarboxylate transporter MCT2 in neuronal cellsJournal of Neurochemistry, 109
S. Parakh, S. Parakh, E. Perri, E. Perri, Cyril Jagaraj, A. Ragagnin, J. Atkin, J. Atkin (2018)
Rab-dependent cellular trafficking and amyotrophic lateral sclerosisCritical Reviews in Biochemistry and Molecular Biology, 53
T. Brown, S. Correia, Cortney Petrok, J. Esteban (2007)
Functional Compartmentalization of Endosomal Trafficking for the Synaptic Delivery of AMPA Receptors during Long-Term PotentiationThe Journal of Neuroscience, 27
Xueyi Li, A. Valencia, E. Sapp, N. Masso, J. Alexander, P. Reeves, K. Kegel, N. Aronin, M. Difiglia (2010)
Aberrant Rab11-Dependent Trafficking of the Neuronal Glutamate Transporter EAAC1 Causes Oxidative Stress and Cell Death in Huntington's DiseaseThe Journal of Neuroscience, 30
A. Morton (2013)
Circadian and sleep disorder in Huntington's diseaseExperimental Neurology, 243
N. Gerges, D. Backos, J. Esteban (2004)
Local Control of AMPA Receptor Trafficking at the Postsynaptic Terminal by a Small GTPase of the Rab Family*Journal of Biological Chemistry, 279
A. Brand, N. Perrimon (1993)
Targeted gene expression as a means of altering cell fates and generating dominant phenotypes.Development, 118 2
Ferdi Kiral, F. Kohrs, E. Jin, P. Hiesinger (2018)
Rab GTPases and Membrane Trafficking in NeurodegenerationCurrent biology : CB, 28
N. Guadagno, C. Progida (2019)
Rab GTPases: Switching to Human DiseasesCells, 8
Xian Zhang, Timothy Huang, Joel Yancey, Hong Luo, Yun-wu Zhang (2018)
Role of Rab GTPases in Alzheimer's Disease.ACS chemical neuroscience, 10 2
J. Peränen, P. Auvinen, H. Virta, R. Wepf, K. Simons (1996)
Rab8 promotes polarized membrane transport through reorganization of actin and microtubules in fibroblastsThe Journal of Cell Biology, 135
O. Ozkaya, E. Rosato (2012)
The circadian clock of the fly: a neurogenetics journey through time.Advances in genetics, 77
Hongyu Ying, B. Yue (2016)
Optineurin: The autophagy connection.Experimental eye research, 144
J. Steinert, S. Campesan, P. Richards, C. Kyriacou, I. Forsythe, F. Giorgini (2012)
Rab11 rescues synaptic dysfunction and behavioural deficits in a Drosophila model of Huntington's diseaseHuman Molecular Genetics, 21
D. Sahlender, R. Roberts, S. Arden, Giulietta Spudich, Marcus Taylor, J. Luzio, J. Kendrick-jones, F. Buss (2005)
Optineurin links myosin VI to the Golgi complex and is involved in Golgi organization and exocytosisThe Journal of Cell Biology, 169
M. Nachury (2008)
Tandem affinity purification of the BBSome, a critical regulator of Rab8 in ciliogenesis.Methods in enzymology, 439
N. Kobayashi (2002)
Mechanism of the process formation; podocytes vs. neuronsMicroscopy Research and Technique, 57
Jun Zhang, Karen Schulze, P. Hiesinger, K. Suyama, Stream Wang, M. Fish, M. Acar, R. Hoskins, H. Bellen, M. Scott (2007)
Thirty-One Flavors of Drosophila Rab ProteinsGenetics, 176
Chunmin Dong, Lingling Yang, Xiaoping Zhang, Hua Gu, M. Lam, W. Claycomb, H. Xia, Guangyu Wu (2010)
Rab8 Interacts with Distinct Motifs in α2B- and β2-Adrenergic Receptors and Differentially Modulates Their Transport*The Journal of Biological Chemistry, 285
G. Bates, Ray Dorsey, J. Gusella, M. Hayden, C. Kay, B. Leavitt, M. Nance, C. Ross, R. Scahill, R. Wetzel, E. Wild, S. Tabrizi (2015)
Huntington diseaseNature Reviews Disease Primers
I. Mata, Yongwoo Jang, Chun-Hyung Kim, D. Hanna, M. Dorschner, A. Samii, P. Agarwal, John Roberts, O. Klepitskaya, D. Shprecher, Kathryn Chung, S. Factor, A. Espay, Frédy Revilla, D. Higgins, I. Litvan, J. Leverenz, D. Yearout, Miguel Inca-Martinez, Erica Martinez, Tiffany Thompson, B. Cholerton, Shu‐Ching Hu, K. Edwards, Kwang-Soo Kim, C. Zabetian (2015)
The RAB39B p.G192R mutation causes X-linked dominant Parkinson’s diseaseMolecular Neurodegeneration, 10
Katarina Hattula, J. Furuhjelm, Jaana Tikkanen, K. Tanhuanpää, Pirjo Laakkonen, J. Peränen (2006)
Characterization of the Rab8-specific membrane traffic route linked to protrusion formationJournal of Cell Science, 119
David Macleod, H. Rhinn, Tomoki Kuwahara, Ari Zolin, G. Paolo, B. McCabe, K. Marder, L. Honig, L. Clark, S. Small, A. Abeliovich (2013)
RAB7L1 Interacts with LRRK2 to Modify Intraneuronal Protein Sorting and Parkinson’s Disease RiskNeuron, 79
Carla Bento, C. Puri, K. Moreau, D. Rubinsztein (2013)
The role of membrane-trafficking small GTPases in the regulation of autophagyJournal of Cell Science, 126
V. Sheeba, K. Fogle, T. Holmes (2010)
Persistence of Morning Anticipation Behavior and High Amplitude Morning Startle Response Following Functional Loss of Small Ventral Lateral Neurons in DrosophilaPLoS ONE, 5
Xueyi Li, E. Sapp, K. Chase, Laryssa Comer-Tierney, N. Masso, J. Alexander, P. Reeves, K. Kegel, A. Valencia, M. Esteves, N. Aronin, M. Difiglia (2009)
Disruption of Rab11 activity in a knock-in mouse model of Huntington's diseaseNeurobiology of Disease, 36
Martin Steger, F. Tonelli, Genta Ito, Paul Davies, M. Trost, M. Vetter, S. Wachter, E. Lorentzen, G. Duddy, Steve Wilson, Marco Baptista, B. Fiske, Matthew Fell, J. Morrow, A. Reith, D. Alessi, M. Mann (2016)
Phosphoproteomics reveals that Parkinson's disease kinase LRRK2 regulates a subset of Rab GTPaseseLife, 5
Yan Hong, Ting Zhao, Xiao-Jiang Li, Shihua Li (2016)
Mutant Huntingtin Impairs BDNF Release from Astrocytes by Disrupting Conversion of Rab3a-GTP into Rab3a-GDPThe Journal of Neuroscience, 36
S. Renn, Jae Park, M. Rosbash, Jeffrey Hall, P. Taghert (1999)
A pdf Neuropeptide Gene Mutation and Ablation of PDF Neurons Each Cause Severe Abnormalities of Behavioral Circadian Rhythms in DrosophilaCell, 99
O. Moritz, B. Tam, Larry Hurd, J. Peränen, D. Deretic, D. Deretic, D. Papermaster (2001)
Mutant rab8 Impairs docking and fusion of rhodopsin-bearing post-Golgi membranes and causes cell death of transgenic Xenopus rods.Molecular biology of the cell, 12 8
A. Ang, H. Fölsch, U. Koivisto, M. Pypaert, I. Mellman (2003)
The Rab8 GTPase selectively regulates AP-1B–dependent basolateral transport in polarized Madin-Darby canine kidney cellsThe Journal of Cell Biology, 163
Gabrielle Wilson, Joe Sim, C. Mclean, Maila Giannandrea, C. Galea, J. Riseley, S. Stephenson, E. Fitzpatrick, S. Haas, K. Pope, K. Hogan, R. Gregg, C. Bromhead, D. Wargowski, Christopher Lawrence, P. James, A. Churchyard, Yujing Gao, D. Phelan, Greta Gillies, Nicholas Salce, L. Stanford, Ashley Marsh, M. Mignogna, S. Hayflick, R. Leventer, M. Delatycki, G. Mellick, V. Kalscheuer, P. D’Adamo, M. Bahlo, D. Amor, P. Lockhart (2014)
Mutations in RAB39B cause X-linked intellectual disability and early-onset Parkinson disease with α-synuclein pathology.American journal of human genetics, 95 6
Lukas Huber, M. Hoop, Paul Dupree, Marino Zerial, Kai Simons, S. Pimplikar (1993)
Protein transport to the dendritic plasma membrane of cultured neurons is regulated by rab8pThe Journal of Cell Biology, 123
S. Lesage, J. Bras, F. Cormier‐Dequaire, Christel Condroyer, A. Nicolas, Lee Darwent, Rita Guerreiro, E. Majounie, Monica Federoff, P. Heutink, Nicholas Wood, Thomas Gasser, John Hardy, François Tison, Andy Singleton, Alexis Brice (2015)
Loss-of-function mutations in RAB39B are associated with typical early-onset Parkinson diseaseNeurology: Genetics, 1
Manohar Pilli, J. Arko-Mensah, Marisa Ponpuak, Esteban Roberts, Sharon Master, M. Mandell, N. Dupont, Wojciech Ornatowski, Shanya Jiang, Steven Bradfute, J. Bruun, T. Hansen, T. Johansen, V. Deretic (2012)
TBK-1 promotes autophagy-mediated antimicrobial defense by controlling autophagosome maturation.Immunity, 37 2
Luis Bonet-Ponce, M. Cookson (2019)
The role of Rab GTPases in the pathobiology of Parkinson' disease.Current opinion in cell biology, 59
Y. Lai, Chandana Kondapalli, Ronny Lehneck, J. Procter, B. Dill, Helen Woodroof, Robert Gourlay, M. Peggie, Thomas Macartney, O. Corti, J. Corvol, D. Campbell, A. Itzen, M. Trost, M. Muqit (2015)
Phosphoproteomic screening identifies Rab GTPases as novel downstream targets of PINK1The EMBO Journal, 34
Xueyi Li, C. Standley, E. Sapp, A. Valencia, Zheng-Hong Qin, K. Kegel, Jennifer Yoder, Laryssa Comer-Tierney, M. Esteves, K. Chase, J. Alexander, N. Masso, Lindsay Sobin, Karl Bellve, R. Tuft, Lawrence Lifshitz, K. Fogarty, N. Aronin, M. Difiglia (2009)
Mutant Huntingtin Impairs Vesicle Formation from Recycling Endosomes by Interfering with Rab11 ActivityMolecular and Cellular Biology, 29
Xueyi Li, A. Valencia, H. McClory, E. Sapp, K. Kegel, M. Difiglia (2012)
Deficient Rab11 activity underlies glucose hypometabolism in primary neurons of Huntington's disease mice.Biochemical and biophysical research communications, 421 4
M. Zordan, C. Benna, G. Mazzotta (2007)
Monitoring and analyzing Drosophila circadian locomotor activity.Methods in molecular biology, 362
E. Green, F. Giorgini (2012)
Choosing and using Drosophila models to characterize modifiers of Huntington's disease.Biochemical Society transactions, 40 4
B. Ravikumar, S. Imarisio, Sovan Sarkar, C. O’Kane, D. Rubinsztein (2008)
Rab5 modulates aggregation and toxicity of mutant huntingtin through macroautophagy in cell and fly models of Huntington diseaseJournal of Cell Science, 121
D. Toro, J. Canals, S. Ginés, M. Kojima, G. Egea, J. Alberch (2006)
Mutant huntingtin Impairs the Post-Golgi Trafficking of Brain-Derived Neurotrophic Factor But Not Its Val66Met PolymorphismThe Journal of Neuroscience, 26
Martin Steger, Federico Diez, H. Dhekne, P. Lis, Raja Nirujogi, Ozge Karayel, F. Tonelli, Terina Martinez, E. Lorentzen, S. Pfeffer, D. Alessi, M. Mann (2017)
Systematic proteomic analysis of LRRK2-mediated Rab GTPase phosphorylation establishes a connection to ciliogenesiseLife, 6
Fabian Hosp, Sara Gutiérrez-Ángel, Martin Schaefer, J. Cox, F. Meissner, M. Hipp, F. Hartl, R. Klein, I. Dudanova, M. Mann (2017)
Spatiotemporal Proteomic Profiling of Huntington’s Disease Inclusions Reveals Widespread Loss of Protein FunctionCell Reports, 21
Adewale Adegbuyiro, Faezeh Sedighi, Albert Pilkington, Sharon Groover, J. Legleiter (2017)
Proteins Containing Expanded Polyglutamine Tracts and Neurodegenerative Disease.Biochemistry, 56 9
D. Toro, J. Alberch, Francisco Lázaro-Diéguez, R. Martín-Ibañez, X. Xifró, G. Egea, J. Canals (2009)
Mutant huntingtin impairs post-Golgi trafficking to lysosomes by delocalizing optineurin/Rab8 complex from the Golgi apparatus.Molecular biology of the cell, 20 5
N. Dupont, Shanya Jiang, Manohar Pilli, Wojciech Ornatowski, Dhruva Bhattacharya, V. Deretic (2011)
Autophagy‐based unconventional secretory pathway for extracellular delivery of IL‐1βThe EMBO Journal, 30
Xueyi Li, E. Sapp, A. Valencia, K. Kegel, Zheng-Hong Qin, J. Alexander, N. Masso, P. Reeves, J. Ritch, S. Zeitlin, N. Aronin, M. Difiglia (2008)
A function of huntingtin in guanine nucleotide exchange on Rab11NeuroReport, 19
R. Mason, M. Casu, Nicola Butler, C. Breda, S. Campesan, J. Clapp, E. Green, Devyani Dhulkhed, C. Kyriacou, F. Giorgini (2013)
Glutathione peroxidase activity is neuroprotective in models of Huntington's diseaseNature Genetics, 45
J. Steffan, L. Bodai, J. Pallos, M. Poelman, A. McCampbell, B. Apostol, A. Kazantsev, E. Schmidt, Ya-zhen Zhu, Marilee Greenwald, R. Kurokawa, D. Housman, G. Jackson, J. Marsh, L. Thompson (2001)
Histone deacetylase inhibitors arrest polyglutamine-dependent neurodegeneration in DrosophilaNature, 413
D. Deretic, L. Huber, N. Ransom, M. Mancini, K. Simons, D. Papermaster (1995)
rab8 in retinal photoreceptors may participate in rhodopsin transport and in rod outer segment disk morphogenesis.Journal of cell science, 108 ( Pt 1)
V. Deretic, T. Saitoh, S. Akira (2013)
Autophagy in infection, inflammation and immunityNature Reviews Immunology, 13
Jessica Esseltine, F. Ribeiro, S. Ferguson (2012)
Rab8 Modulates Metabotropic Glutamate Receptor Subtype 1 Intracellular Trafficking and Signaling in a Protein Kinase C-Dependent MannerThe Journal of Neuroscience, 32
C. Ross, S. Tabrizi (2011)
Huntington's disease: from molecular pathogenesis to clinical treatmentThe Lancet Neurology, 10
M. MacDonald, C. Ambrose, M. Duyao, R. Myers, Carol Lin, L. Srinidhi, G. Barnes, Sherryl Taylor, M. James, Nicolet Groot, Heather Macfarlane, B. Jenkins, M. Anderson, N. Wexler, J. Gusella, G. Bates, S. Baxendale, H. Hummerich, S. Kirby, M. North, S. Youngman, R. Mott, G. Zehetner, Z. Sedlacek, A. Poustka, A. Frischauf, H. Lehrach, A. Buckler, D. Church, L. Doucette-Stamm, M. O’Donovan, Laura Riba-Ramírez, Manish Shah, V. Stanton, S. Strobel, K. Draths, Jennifer Wales, P. Dervan, D. Housman, M. Altherr, R. Shiang, L. Thompson, T. Fielder, J. Wasmuth, D. Tagle, J. Valdes, Lon Elmer, M. Allard, L. Castilla, M. Swaroop, K. Blanchard, F. Collins, R. Snell, T. Holloway, Kathleen Gillespie, N. Datson, D. Shaw, P. Harper (1993)
A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomesCell, 72
X. Ao, L. Zou, Yuanyuan Wu (2014)
Regulation of autophagy by the Rab GTPase networkCell Death and Differentiation, 21
A. Pal, F. Severin, B. Lommer, A. Shevchenko, M. Zerial (2006)
Huntingtin–HAP40 complex is a novel Rab5 effector that regulates early endosome motility and is up-regulated in Huntington's diseaseThe Journal of Cell Biology, 172
M. Difiglia, E. Sapp, K. Chase, Cordula Schwarz, A. Meloni, C. Young, E. Martin, J. Vonsattel, R. Carraway, S. Reeves, F. Boyce, N. Aronin (1995)
Huntingtin is a cytoplasmic protein associated with vesicles in human and rat brain neuronsNeuron, 14
Background:Altered cellular vesicle trafficking has been linked to the pathogenesis of Huntington’s disease (HD), a fatal, inherited neurodegenerative disorder caused by mutation of the huntingtin (HTT) protein. The Rab GTPase family of proteins plays a key role in regulation of vesicle trafficking, with distinct Rabs helping specify membrane identity and mediating cellular processes including budding, motility and tethering of vesicles to their targets. In recent years several Rab GTPases—notably, Rab5 and Rab11—have been linked to the pathogenesis of neurodegenerative disorders, including HD.Objective:We investigated whether Rab8, which regulates post-Golgi vesicle trafficking, is able to improve HD-relevant phenotypes in a well-characterised model.Methods:We overexpressed Rab8 in a Drosophila model of HD testing cellular, behavioural, and molecular phenotypes.Results:We found that Rab8 overexpression ameliorated several disease-related phenotypes in fruit flies expressing a mutant HTT fragment throughout the nervous system, including neurodegeneration of photoreceptor neurons, reduced eclosion of the adult fly from the pupal case and shortened lifespan. Rab8 overexpression also normalised aberrant circadian locomotor behaviour in flies expressing mutant HTT in a specific population of neurons that regulate the circadian clock. Intriguingly, expression of Rab8 increased the accumulation of SDS-insoluble aggregated species of mutant HTT.Conclusion:Collectively, our findings demonstrate that increased Rab8 levels protect against mutant HTT toxicity and potentiate its aggregation, likely reducing the accumulation of downstream toxic soluble species.
Journal of Huntington's Disease – IOS Press
Published: Oct 8, 2020
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.