Access the full text.
Sign up today, get DeepDyve free for 14 days.
Se Choi, J. Ryu, I. Chang, Tae-Hyoung Kim, S. Myung, Y. Moon, Kyung Kim, Jin Kim (2014)
Predicting Recurrence and Progression of Non-Muscle-Invasive Bladder Cancer in Korean Patients: A Comparison of the EORTC and CUETO ModelsKorean Journal of Urology, 55
E. Xylinas, M. Kent, L. Kluth, L. Kluth, A. Pycha, E. Comploj, R. Svatek, Y. Lotan, Q. Trinh, P. Karakiewicz, S. Holmäng, D. Scherr, M. Zerbib, A. Vickers, S. Shariat, S. Shariat (2013)
Accuracy of the EORTC risk tables and of the CUETO scoring model to predict outcomes in non-muscle-invasive urothelial carcinoma of the bladderBritish Journal of Cancer, 109
J. Witjes, J. Redorta, D. Jacqmin, F. Sofras, P. Malmström, C. Riedl, D. Jocham, G. Conti, F. Montorsi, H. Arentsen, D. Zaak, A. Mostafid, M. Babjuk (2010)
Hexaminolevulinate-guided fluorescence cystoscopy in the diagnosis and follow-up of patients with non-muscle-invasive bladder cancer: review of the evidence and recommendations.European urology, 57 4
ID MauritsDijkstra, P. Bawono, ID SanneAbeln, ID K.AntonFeenstra, ID WanFokkink, J. Heringa (2018)
Motif-Aware PRALINE: Improving the alignment of motif regionsPLoS Computational Biology, 14
T. Ching, Xun Zhu, L. Garmire (2018)
Cox-nnet: An artificial neural network method for prognosis prediction of high-throughput omics dataPLoS Computational Biology, 14
R. Lammers, J. Hendriks, Ó. Faba, W. Witjes, J. Palou, J. Witjes (2015)
Prediction model for recurrence probabilities after intravesical chemotherapy in patients with intermediate-risk non-muscle-invasive bladder cancer, including external validationWorld Journal of Urology, 34
H. Ishwaran, U. Kogalur, E. Blackstone, M. Lauer (2008)
Random Survival ForestsWiley StatsRef: Statistics Reference Online
Pooya Mobadersany, Safoora Yousefi, M. Amgad, D. Gutman, J. Barnholtz-Sloan, José Vega, D. Brat, L. Cooper (2017)
Predicting cancer outcomes from histology and genomics using convolutional networksProceedings of the National Academy of Sciences of the United States of America, 115
Prediction of Recurrence in NMIBC recurrence and progression of non - muscle invasive bladder cancer : An international validation in primary tumours
M. Babjuk, M. Burger, R. Zigeuner, S. Shariat, B. Rhijn, E. Compérat, R. Sylvester, E. Kaasinen, A. Böhle, J. Redorta, M. Rouprêt (2013)
EAU guidelines on non-muscle-invasive urothelial carcinoma of the bladder: update 2013.European urology, 64 4
M. Babjuk, A. Böhle, M. Burger, O. Čapoun, D. Cohen, E. Compérat, V. Hernández, E. Kaasinen, J. Palou, M. Rouprêt, B. Rhijn, S. Shariat, V. Soukup, R. Sylvester, R. Zigeuner (2017)
EAU Guidelines on Non-Muscle-invasive Urothelial Carcinoma of the Bladder: Update 2016.European urology, 71 3
B. Rhijn, M. Burger, Y. Lotan, E. Solsona, Christian Stief, R. Sylvester, J. Witjes, A. Zlotta (2009)
Recurrence and progression of disease in non-muscle-invasive bladder cancer: from epidemiology to treatment strategy.European urology, 56 3
Neeraj Kumar, R. Verma, A. Arora, Abhay Kumar, Sanchita Gupta, A. Sethi, P. Gann (2017)
Convolutional neural networks for prostate cancer recurrence prediction, 10140
Y. Kohjimoto, Hiroki Kusumoto, S. Nishizawa, K. Kikkawa, Y. Kodama, M. Ko, Nagahide Matsumura, I. Hara (2014)
External validation of European Organization for Research and Treatment of Cancer and Spanish Urological Club for Oncological Treatment scoring models to predict recurrence and progression in Japanese patients with non‐muscle invasive bladder cancer treated with bacillus Calmette–GuérinInternational Journal of Urology, 21
J. Oddens, M. Brausi, R. Sylvester, A. Bono, C. Beek, G. Andel, P. Gontero, W. Hoeltl, L. Turkeri, S. Marréaud, S. Collette, W. Oosterlinck (2013)
Final results of an EORTC-GU cancers group randomized study of maintenance bacillus Calmette-Guérin in intermediate- and high-risk Ta, T1 papillary carcinoma of the urinary bladder: one-third dose versus full dose and 1 year versus 3 years of maintenance.European urology, 63 3
K. Sievert, Bastian Amend, U. Nagele, D. Schilling, Jens Bedke, M. Horstmann, J. Hennenlotter, S. Kruck, A. Stenzl (2009)
Economic aspects of bladder cancer: what are the benefits and costs?World Journal of Urology, 27
J. Fernández-Gómez, R. Madero, E. Solsona, M. Unda, L. Martínez-Piñeiro, Marcelino González, J. Portillo, A. Ojea, C. Pertusa, J. Rodríguez-Molina, J. Camacho, M. Rabadán, A. Astobieta, M. Montesinos, S. Isorna, P. Muntañola, A. Gimeno, M. Blas, J. Martinez-Pineiro (2009)
Predicting nonmuscle invasive bladder cancer recurrence and progression in patients treated with bacillus Calmette-Guerin: the CUETO scoring model.The Journal of urology, 182 5
Mateusz Jobczyk, K. Stawiski, W. Fendler, W. Różański (2019)
Validation of EORTC, CUETO, and EAU risk stratification in prediction of recurrence, progression, and death of patients with initially non–muscle‐invasive bladder cancer (NMIBC): A cohort analysisCancer Medicine, 9
Jakob Kather, J. Krisam, P. Charoentong, T. Luedde, E. Herpel, Cleo-Aron Weis, T. Gaiser, A. Marx, N. Valous, D. Ferber, L. Jansen, C. Reyes-Aldasoro, I. Zörnig, D. Jäger, H. Brenner, J. Chang-Claude, M. Hoffmeister, N. Halama (2019)
Predicting survival from colorectal cancer histology slides using deep learning: A retrospective multicenter studyPLoS Medicine, 16
M. Rieken, S. Shariat, L. Kluth, J. Crivelli, M. Abufaraj, B. Foerster, A. Mari, D. Ilijazi, P. Karakiewicz, M. Babjuk, M. Gönen, E. Xylinas (2018)
Comparison of the EORTC tables and the EAU categories for risk stratification of patients with nonmuscle-invasive bladder cancer.Urologic oncology, 36 1
M. Vedder, M. Márquez, E. Bekker-Grob, M. Calle, L. Dyrskjøt, Manoils Kogevinas, U. Segersten, P. Malmström, F. Algaba, Willemien Beukers, T. Ørntoft, E. Zwarthoff, F. Real, N. Malats, E. Steyerberg (2014)
Risk Prediction Scores for Recurrence and Progression of Non-Muscle Invasive Bladder Cancer: An International Validation in Primary TumoursPLoS ONE, 9
Håvard Kvamme, Ørnulf Borgan, I. Scheel (2019)
Time-to-Event Prediction with Neural Networks and Cox RegressionJ. Mach. Learn. Res., 20
Takatoshi Kiba, Yumiko Takebayashi, M. Kojima, H. Sakakibara (2019)
Sugar-induced de novo cytokinin biosynthesis contributes to Arabidopsis growth under elevated CO2Scientific Reports, 9
(2001)
Random forests(book)
(2014)
Risk prediction scores
J. Bosschieter, J. Nieuwenhuijzen, A. Vis, Tessa Ginkel, B. Lissenberg-Witte, G. Beckers, R. Moorselaar (2018)
An immediate, single intravesical instillation of mitomycin C is of benefit in patients with non-muscle-invasive bladder cancer irrespective of prognostic risk groups.Urologic oncology, 36 9
R. Commons, J. Simpson, K. Thriemer, T. Abreha, I. Adam, N. Anstey, A. Assefa, G. Awab, J. Baird, Bridget Barber, C. Chu, P. Dahal, A. Daher, A. Daher, T. Davis, A. Dondorp, Matthew Grigg, Georgina Humphreys, J. Hwang, J. Hwang, H. Karunajeewa, M. Laman, M. Laman, K. Lidia, B. Moore, B. Moore, B. Moore, I. Mueller, Ivo Mueller, Ivo Mueller, F. Nosten, A. Pasaribu, D. Pereira, A. Phyo, J. Poespoprodjo, C. Sibley, K. Stepniewska, I. Sutanto, G. Thwaites, T. Hien, N. White, T. William, C. Woodrow, P. Guérin, R. Price (2019)
The efficacy of dihydroartemisinin-piperaquine and artemether-lumefantrine with and without primaquine on Plasmodium vivax recurrence: A systematic review and individual patient data meta-analysisPLoS Medicine, 16
M. Kilinc, G. Bayar, A. Dalkılıç, N. Sönmez, S. Arısan, S. Güney (2017)
Applicability of the EORTC risk tables to predict outcomes in non-muscle-invasive bladder cancer in Turkish patients.Turkish journal of urology, 43 1
R. Sylvester, W. Oosterlinck, S. Holmang, M. Sydes, A. Birtle, S. Gudjonsson, C. Nunzio, K. Okamura, E. Kaasinen, E. Solsona, B. Ali-El-Dein, C. Tatar, B. Inman, J. N'Dow, J. Oddens, M. Babjuk (2016)
Systematic Review and Individual Patient Data Meta-analysis of Randomized Trials Comparing a Single Immediate Instillation of Chemotherapy After Transurethral Resection with Transurethral Resection Alone in Patients with Stage pTa-pT1 Urothelial Carcinoma of the Bladder: Which Patients Benefit fromEuropean urology, 69 2
Chris Berdik (2017)
Unlocking bladder cancerNature, 551
R. Sylvester, M. Brausi, W. Kirkels, W. Hoeltl, F. Silva, P. Powell, S. Prescott, Z. Kirkali, C. Beek, T. Gorlia, T. Reijke (2010)
Long-term efficacy results of EORTC genito-urinary group randomized phase 3 study 30911 comparing intravesical instillations of epirubicin, bacillus Calmette-Guérin, and bacillus Calmette-Guérin plus isoniazid in patients with intermediate- and high-risk stage Ta T1 urothelial carcinoma of the bladdEuropean urology, 57 5
(2008)
( impo ) Random forests ( book )
Martin Magers, A. López-Beltran, R. Montironi, S. Williamson, H. Kaimakliotis, Liang Cheng (2018)
Staging of bladder cancerHistopathology, 74
R. Sylvester, A. Meijden, W. Oosterlinck, J. Witjes, C. Bouffioux, L. Denis, D. Newling, K. Kurth (2006)
Predicting recurrence and progression in individual patients with stage Ta T1 bladder cancer using EORTC risk tables: a combined analysis of 2596 patients from seven EORTC trials.European urology, 49 3
(2001)
impo)Random forests(book). Mach Learn [Internet]. 2001;5-32
V. Soukup, O. Čapoun, D. Cohen, V. Hernández, M. Burger, E. Compérat, P. Gontero, T. Lam, A. Mostafid, J. Palou, B. Rhijn, M. Rouprêt, S. Shariat, R. Sylvester, Yuhong Yuan, R. Zigeuner, M. Babjuk (2020)
Risk Stratification Tools and Prognostic Models in Non-muscle-invasive Bladder Cancer: A Critical Assessment from the European Association of Urology Non-muscle-invasive Bladder Cancer Guidelines Panel.European urology focus
Dmitrii Bychkov, N. Linder, Riku Turkki, S. Nordling, P. Kovanen, C. Verrill, Margarita Walliander, M. Lundin, C. Haglund, J. Lundin (2018)
Deep learning based tissue analysis predicts outcome in colorectal cancerScientific Reports, 8
(2018)
dom survival forests
Sairam Tabibu, P. Vinod, C. Jawahar (2019)
Pan-Renal Cell Carcinoma classification and survival prediction from histopathology images using deep learningScientific Reports, 9
BACKGROUND:EORTC, CUETO and EAU are the most commonly used risk stratification models for recurrence and progression in non-muscle invasive bladder cancer (NMIBC).OBJECTIVE:We assessed the predictive value of the EORTC, CUETO and EAU risk group stratification methods for our population and explore options to improve the predictive value using Cox Proportional Hazards (CPH), Boosted Cox regression and a non-linear Random Survival Forest (RSF) model.MATERIALS:Our retrospective database included of 452 NMIBC patients who underwent a transurethral resection of bladder tumor (TURBT) between 2000 and 2018 in our hospital. The cumulative incidence of recurrence was calculated at one- and five-years for all risk stratification methods. A customized CPH, Boosted Cox and RSF models were trained in order to predict recurrence, and the performances were compared.RESULTS:Risk stratification using the EORTC, CUETO and EAU showed small differences in recurrence probabilities between the risk groups as determined by the risk stratification. The concordance indices (C-index) were low and ranged between 0.51 and 0.57. The predictive accuracies of CPH, Boosted Cox and RSF models were also moderate, with C-indices ranging from 0.61 to 0.64.CONCLUSIONS:Prediction of recurrence in patients with NMIBC based on patient characteristics is difficult. Alternative (non-linear) approaches have the potential to improve the predictive value. Nonetheless, the currently used characteristics are unable to properly stratify between the recurrence risks of patients.
Bladder Cancer – IOS Press
Published: Sep 21, 2020
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.