Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Assessing the Potential of Vegetation Carbon Uptake from Optimal Land Management in the Greater Guangzhou Area

Assessing the Potential of Vegetation Carbon Uptake from Optimal Land Management in the Greater... Rapid urbanization has threatened sustainable urban development in many cities across the globe, causing green space loss and vegetation cover degradation which reduce carbon sequestration. Optimal land management practices (LMPs) in an urban context are known as ways capable of promoting urban vegetation growth and contributing to carbon sequestration. Due to variations of physical, biological, and social structures in urban areas, policymakers often lack relevant information to decide and implement site-specific LMPs. Here we try to extract the areas in need of the optimal LMPs, identify location-dependent optimal LMPs, and assess how much more carbon can be captured by applying a combination of segmenting homogeneous urban environments and neighborhood-based analysis. As one of the most developed cities in China, the greater Guangzhou area (GGA) was selected as a case study. We found that the carbon uptake from the urban vegetation in GGA could be improved on average by 185 gC m−2 yr−1 in flux (or 1.3 TgC yr−1 in total) with optimal LMPs, equivalent to a ~30% increase considering the current level of 662 gC m−2 yr−1 in flux (4.4 TgC yr−1 in total). The carbon uptake potential was found to differ considerably across locations and among different ecosystem types, highlighting spatially varied priorities for implementing optimal LMPs over the space. This study reveals the usefulness of the model in assessing carbon uptake potential from optimal LMPs and emphasizes that future urban planning may consider the importance of optimal LMPs in enhancing vegetation carbon uptake in urban planning. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Land Multidisciplinary Digital Publishing Institute

Assessing the Potential of Vegetation Carbon Uptake from Optimal Land Management in the Greater Guangzhou Area

Assessing the Potential of Vegetation Carbon Uptake from Optimal Land Management in the Greater Guangzhou Area

Land , Volume 11 (11) – Oct 22, 2022

Abstract

Rapid urbanization has threatened sustainable urban development in many cities across the globe, causing green space loss and vegetation cover degradation which reduce carbon sequestration. Optimal land management practices (LMPs) in an urban context are known as ways capable of promoting urban vegetation growth and contributing to carbon sequestration. Due to variations of physical, biological, and social structures in urban areas, policymakers often lack relevant information to decide and implement site-specific LMPs. Here we try to extract the areas in need of the optimal LMPs, identify location-dependent optimal LMPs, and assess how much more carbon can be captured by applying a combination of segmenting homogeneous urban environments and neighborhood-based analysis. As one of the most developed cities in China, the greater Guangzhou area (GGA) was selected as a case study. We found that the carbon uptake from the urban vegetation in GGA could be improved on average by 185 gC m−2 yr−1 in flux (or 1.3 TgC yr−1 in total) with optimal LMPs, equivalent to a ~30% increase considering the current level of 662 gC m−2 yr−1 in flux (4.4 TgC yr−1 in total). The carbon uptake potential was found to differ considerably across locations and among different ecosystem types, highlighting spatially varied priorities for implementing optimal LMPs over the space. This study reveals the usefulness of the model in assessing carbon uptake potential from optimal LMPs and emphasizes that future urban planning may consider the importance of optimal LMPs in enhancing vegetation carbon uptake in urban planning.

Loading next page...
 
/lp/multidisciplinary-digital-publishing-institute/assessing-the-potential-of-vegetation-carbon-uptake-from-optimal-land-Ir0RCeCZ7x

References

References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.

Publisher
Multidisciplinary Digital Publishing Institute
Copyright
© 1996-2022 MDPI (Basel, Switzerland) unless otherwise stated Disclaimer Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. Terms and Conditions Privacy Policy
ISSN
2073-445X
DOI
10.3390/land11111878
Publisher site
See Article on Publisher Site

Abstract

Rapid urbanization has threatened sustainable urban development in many cities across the globe, causing green space loss and vegetation cover degradation which reduce carbon sequestration. Optimal land management practices (LMPs) in an urban context are known as ways capable of promoting urban vegetation growth and contributing to carbon sequestration. Due to variations of physical, biological, and social structures in urban areas, policymakers often lack relevant information to decide and implement site-specific LMPs. Here we try to extract the areas in need of the optimal LMPs, identify location-dependent optimal LMPs, and assess how much more carbon can be captured by applying a combination of segmenting homogeneous urban environments and neighborhood-based analysis. As one of the most developed cities in China, the greater Guangzhou area (GGA) was selected as a case study. We found that the carbon uptake from the urban vegetation in GGA could be improved on average by 185 gC m−2 yr−1 in flux (or 1.3 TgC yr−1 in total) with optimal LMPs, equivalent to a ~30% increase considering the current level of 662 gC m−2 yr−1 in flux (4.4 TgC yr−1 in total). The carbon uptake potential was found to differ considerably across locations and among different ecosystem types, highlighting spatially varied priorities for implementing optimal LMPs over the space. This study reveals the usefulness of the model in assessing carbon uptake potential from optimal LMPs and emphasizes that future urban planning may consider the importance of optimal LMPs in enhancing vegetation carbon uptake in urban planning.

Journal

LandMultidisciplinary Digital Publishing Institute

Published: Oct 22, 2022

Keywords: urban vegetation; carbon sequestration; flux; land management; environment heterogeneity

There are no references for this article.