Access the full text.
Sign up today, get DeepDyve free for 14 days.
Nattaphon Suphaphimol, N. Suwannarach, W. Purahong, C. Jaikang, K. Pengpat, Natthawat Semakul, Saranphong Yimklan, Surachai Jongjitngam, Saiklang Jindasu, Sathaporn Thiangtham, P. Chantawannakul, Terd Disayathanoowat (2022)
Identification of Microorganisms Dwelling on the 19th Century Lanna Mural Paintings from Northern Thailand Using Culture-Dependent and -Independent ApproachesBiology, 11
K. Tiwari, Rajinder Gupta (2012)
Rare actinomycetes: a potential storehouse for novel antibioticsCritical Reviews in Biotechnology, 32
An Shi, Ying Hu, Xiao Zhang, Dan Zhou, Junlong Xu, C. Rensing, Liming Zhang, S. Xing, W. Ni, Wenhao Yang (2023)
Biochar loaded with bacteria enhanced Cd/Zn phytoextraction by facilitating plant growth and shaping rhizospheric microbial community.Environmental pollution
H. Barton, N. Taylor, Michael Kreate, Austin Springer, S. Oehrle, Janet Bertog (2007)
The Impact of Host Rock Geochemistry on Bacterial Community Structure in Oligotrophic Cave Environments.International Journal of Speleology, 36
Michaela Cimermanova, P. Pristaš, M. Piknová (2021)
Biodiversity of Actinomycetes from Heavy Metal Contaminated TechnosolsMicroorganisms, 9
Harald Bredholdt, O. Galatenko, Kerstin Engelhardt, E. Fjaervik, L. Terekhova, S. Zotchev (2007)
Rare actinomycete bacteria from the shallow water sediments of the Trondheim fjord, Norway: isolation, diversity and biological activity.Environmental microbiology, 9 11
Lise Alonso, T. Pommier, B. Kaufmann, A. Dubost, D. Chapulliot, J. Doré, C. Douady, Y. Moënne‐Loccoz (2019)
Anthropization level of Lascaux Cave microbiome shown by regional‐scale comparisons of pristine and anthropized cavesMolecular Ecology, 28
Papel de los Microorganismos en Procesos de Captaci ó n y Emisi ó n de Gases de Efecto Invernadero en Ambientes Subterr á neos
(2021)
Evaluation of Stone Deterioration Problems of Anavarza Archaeological Site for the Purpose of Conservation
Olivera Topalović, Susana Santos, H. Heuer, J. Nesme, Xorla Kanfra, J. Hallmann, S. Sørensen, Mette Vestergård (2022)
Deciphering bacteria associated with a pre-parasitic stage of the root-knot nematode Meloidogyne hapla in nemato-suppressive and nemato-conducive soilsApplied Soil Ecology
S. Lambrechts, A. Willems, Guillaume Tahon (2019)
Uncovering the Uncultivated Majority in Antarctic Soils: Toward a Synergistic ApproachFrontiers in Microbiology, 10
J. Gonzalez-Pimentel, Tamara Martin-Pozas, V. Jurado, A. Miller, A. Caldeira, Octavio Fernandez-Lorenzo, S. Sánchez-Moral, C. Saiz-Jimenez (2021)
Prokaryotic communities from a lava tube cave in La Palma Island (Spain) are involved in the biogeochemical cycle of major elementsPeerJ, 9
Yulong Duan, Fasi Wu, Wanfu Wang, Dongpeng He, J. Gu, H. Feng, Tuo Chen, Guangxiu Liu, L. An (2017)
Correction: The microbial community characteristics of ancient painted sculptures in Maijishan Grottoes, ChinaPLoS ONE, 12
Mengmeng Li, C. Fang, S. Kawasaki, Minsheng Huang, V. Achal (2019)
Bio-consolidation of cracks in masonry cement mortars by Acinetobacter sp. SC4 isolated from a karst caveInternational Biodeterioration & Biodegradation
Marta Maciejewska, D. Adam, Aymeric Naômé, L. Martinet, Elodie Tenconi, M. Całusińska, P. Delfosse, M. Hanikenne, D. Baurain, P. Compère, M. Carnol, H. Barton, S. Rigali (2017)
Assessment of the Potential Role of Streptomyces in Cave Moonmilk FormationFrontiers in Microbiology, 8
S. Baskar, R. Baskar, J. Routh (2011)
Biogenic Evidences of Moonmilk Deposition in the Mawmluh Cave, Meghalaya, IndiaGeomicrobiology Journal, 28
A. Oren, G. Garrity (2021)
Valid publication of the names of forty-two phyla of prokaryotes.International journal of systematic and evolutionary microbiology, 71 10
D. Tomé (2021)
Yeast Extracts: Nutritional and Flavoring Food Ingredients
Deng (2020)
Effects of afforestation with Pinus sylvestris varmongolica plantations combined with enclosure management on soil microbial community. PeerJ, 8
Nicole Benaud, Devan Chelliah, S. Wong, B. Ferrari (2022)
Soil substrate culturing approaches recover diverse members of Actinomycetota from desert soils of Herring Island, East AntarcticaExtremophiles, 26
Jiajia Zuo, Meng Zu, Lei Liu, Xiaomei Song, Yingdan Yuan (2021)
Composition and diversity of bacterial communities in the rhizosphere of the Chinese medicinal herb DendrobiumBMC Plant Biology, 21
H. Barton, D. Northup (2007)
GEOMICROBIOLOGY IN CAVE ENVIRONMENTS: PAST, CURRENT AND FUTURE PERSPECTIVES
L. Wang, Chunyan Peng, Bin Gong, Zicong Yang, Jingjing Song, Lu Li, Lili Xu, T. Yue, Xiaolin Wang, Mengping Yang, Huimin Xu, Xiong Liu (2022)
Actinobacteria Community and Their Antibacterial and Cytotoxic Activity on the Weizhou and Xieyang Volcanic Islands in the Beibu Gulf of ChinaFrontiers in Microbiology, 13
S. Cuezva, Tamara Martin-Pozas, Á. Fernández-Cortés, J. Cañaveras, I. Janssens, S. Sánchez-Moral (2020)
On the role of cave-soil in the carbon cycle. A fist approach.
W. Cao, Yuanxin Xiong, De-gang Zhao, Hongying Tan, Jiaojiao Qu (2019)
Bryophytes and the symbiotic microorganisms, the pioneers of vegetation restoration in karst rocky desertification areas in southwestern ChinaApplied Microbiology and Biotechnology, 104
J. Cañaveras, M. Hoyos, S. Sánchez-Moral, E. Sanz-rubio, J. Bedoya, V. Soler, I. Groth, P. Schumann, L. Láiz, I. González, C. Saiz-Jimenez (1999)
Microbial communities associated with hydromagnesite and needle-fiber aragonite deposits in a karstic cave (Altamira, Northern Spain)Geomicrobiology Journal, 16
I. Dimkić, Milica Ćopić, Marija Petrović, M. Stupar, Željko Savković, A. Knezevic, Gordana Simić, Milica Grbić, N. Unković (2023)
Bacteriobiota of the Cave Church of Sts. Peter and Paul in Serbia—Culturable and Non-Culturable Communities’ Assessment in the Bioconservation Potential of a Peculiar Fresco PaintingInternational Journal of Molecular Sciences, 24
R. Djebaili, A. Mignini, Ilaria Vaccarelli, M. Pellegrini, D. Spera, M. Gallo, A. D’Alessandro (2022)
Polyhydroxybutyrate-producing cyanobacteria from lampenflora: The case study of the “Stiffe” caves in ItalyFrontiers in Microbiology, 13
Siqi Dong, Shou-bao Liu, Shuaikang Cui, Xue Zhou, Q. Gao (2021)
Responses of Soil Properties and Bacterial Community to the Application of Sulfur Fertilizers in Black and Sandy SoilsPolish Journal of Environmental Studies
Yulong Duan, Fasi Wu, Wanfu Wang, Dongpeng He, J. Gu, H. Feng, Tuo Chen, Guangxiu Liu, L. An (2017)
The microbial community characteristics of ancient painted sculptures in Maijishan Grottoes, ChinaPLoS ONE, 12
Xumei Sun, Xiaobo Zhang (2022)
Alien species invasion of deep-sea bacteria into terrestrial soilJournal of Cleaner Production
S. Sánchez-Moral, M. Portillo, I. Janices, S. Cuezva, Á. Fernández-Cortés, J. Cañaveras, J. Gonzalez (2012)
The role of microorganisms in the formation of calcitic moonmilk deposits and speleothems in Altamira CaveGeomorphology, 139
S. Moral, Soledad Cuezva, Á. Cortés, Irene Janices, D. Benavente, J. Cañaveras, J. Grau, Valme Jurado, L. Trobajo, María Guisado, M. Candelera, C. Sáiz-Jiménez (2014)
Estudio integral del estado de conservación de la cueva de Altamira y su arte paleolítico (2007 - 2009). Perspectivas futuras de conservación
Shuwu Zhang, Lei Pei, Yanxin Zhao, J. Shan, Xuebo Zheng, G. Xu, Yuhuan Sun, Fayuan Wang (2023)
Effects of microplastics and nitrogen deposition on soil multifunctionality, particularly C and N cycling.Journal of hazardous materials, 451
(2021)
Instalaci ó n de Sensores en S ó tano Arqueol ó gico del Museo Carmen Thyssen de M á laga Para la Toma de Datos, el An á lisis y Adopci ó n de Medidas Correctoras del Deterioro Del Recinto ;
Xiaowei Zhang, Qinya Ge, Zhibao Zhu, Yiming Deng, J. Gu (2018)
Microbiological community of the Royal Palace in Angkor Thom and Beng Mealea of Cambodia by Illumina sequencing based on 16S rRNA geneInternational Biodeterioration & Biodegradation
K. Lavoie, Ara Winter, Kaitlyn Read, Evan Hughes, M. Spilde, D. Northup (2017)
Comparison of bacterial communities from lava cave microbial mats to overlying surface soils from Lava Beds National Monument, USAPLoS ONE, 12
Yunchuan Long, Juan Jiang, Xuejun Hu, Juan Zhou, Jing Hu, Shaoqi Zhou (2019)
Actinobacterial community in Shuanghe Cave using culture-dependent and -independent approachesWorld Journal of Microbiology and Biotechnology, 35
M. Spilde, D. Northup, Nicole Caimi, P. Boston, F. Stone, Stephen Smith (2016)
MICROBIAL MAT COMMUNITIES IN HAWAIIAN LAVA CAVES
P. Caffrey, Marcus Hogan, Y. Song (2022)
New Glycosylated Polyene Macrolides: Refining the Ore from Genome MiningAntibiotics, 11
Alicyn Reverdy, D. Hathaway, J. Jha, G. Michaels, J. Sullivan, Daniela Mac-Adoo, C. Riquelme, Yunrong Chai, V. Godoy (2020)
Insights into the diversity and survival strategies of soil bacterial isolates from the Atacama DesertbioRxiv
(2020)
Comunidades Microbianas Rizosf é ricas de Plantas em Coexist ê ncia Sob Diferentes Condiç õ es Ed á ficas
(2011)
Microbial community diversity and the complexity of preserving cultural heritage
Culture-independent characterization of "cave silver" biofilms from the 1470 m level of the Sanford Underground Research Facility
(2020)
Carbon Metabolism in Cave Subaerial Biofilms
J. Bérdy (2005)
Bioactive Microbial MetabolitesThe Journal of Antibiotics, 58
Yubiao Lin, Ling Yang, Zetao Chen, Yaqian Gao, Jiejun Kong, Qian He, Yan Su, Ji-yue Li, Q. Qiu (2023)
Seasonal variations of soil bacterial and fungal communities in a subtropical Eucalyptus plantation and their responses to throughfall reductionFrontiers in Microbiology, 14
R. Narendrula (2017)
Biochemical and molecular characterization of microbial communities from a metal contaminated and reclaimed region.
Chongwei Li, Guozhong Chen, Jianlong Zhang, P. Zhu, X. Bai, Yuping Hou, Xingxiao Zhang (2021)
The comprehensive changes in soil properties are continuous cropping obstacles associated with American ginseng (Panax quinquefolius) cultivationScientific Reports, 11
Corinne Biderre-Petit, Corentin Hochart, Hélène Gardon, E. Dugat-Bony, S. Terrat, I. Jouan-Dufournel, R. Paris (2020)
Analysis of bacterial and archaeal communities associated with Fogo volcanic soils of different ages.FEMS microbiology ecology
(2016)
Institute of Fermentation Technology and Microbiology
D. Schulze‐Makuch, D. Lipus, F. Arens, M. Baqué, Till Bornemann, J. Vera, M. Flury, Jan Frösler, Jacobs Heinz, Yunha Hwang, S. Kounaves, K. Mangelsdorf, R. Meckenstock, M. Pannekens, Alexander Probst, J. Sáenz, Janosch Schirmack, M. Schloter, P. Schmitt‐Kopplin, B. Schneider, J. Uhl, Gisle Vestergaard, Bernardita Valenzuela, P. Zamorano, D. Wagner (2021)
Microbial Hotspots in Lithic Microhabitats Inferred from DNA Fractionation and Metagenomics in the Atacama DesertMicroorganisms, 9
J. Ai, Jian Guo, Yancheng Li, Xiong Zhong, Yang Lv, Jiang Li, Aijiang Yang (2021)
The diversity of microbes and prediction of their functions in karst caves under the influence of human tourism activities—a case study of Zhijin Cave in Southwest ChinaEnvironmental Science and Pollution Research, 29
Pi-Ling Chen, Limin Zhang, Xiaoxuan Guo, X. Dai, Li Liu, Li-jun Xi, Jian Wang, Lei Song, Yue-zhao Wang, Ya-xin Zhu, Li Huang, Ying Huang (2016)
Diversity, Biogeography, and Biodegradation Potential of Actinobacteria in the Deep-Sea Sediments along the Southwest Indian RidgeFrontiers in Microbiology, 7
Qiang Li, Bingjian Zhang, Liya Wang, Qinya Ge (2017)
Distribution and diversity of bacteria and fungi colonizing ancient Buddhist statues analyzed by high-throughput sequencingInternational Biodeterioration & Biodegradation, 117
Timothy Hoffmann, Bianca Reeksting, S. Gebhard (2021)
Bacteria-induced mineral precipitation: a mechanistic reviewMicrobiology, 167
Hongda Sun, Qingqing Peng, Jiao Guo, Haoyue Zhang, Junrui Bai, H. Mao (2022)
Effects of short-term soil exposure of different doses of ZnO nanoparticles on the soil environment and the growth and nitrogen fixation of alfalfa.Environmental pollution
J. Joubert, E. Rensburg, M. Pitout (1984)
A plate method for demonstrating the breakdown of heparin and chrondroitin sulphate by bacteriaJournal of Microbiological Methods, 2
He Dongpeng, Fasi Wu, Wenxia Ma, Yong Zhang, J. Gu, Yulong Duan, Xu Ruihong, H. Feng, Wanfu Wang, S. Li (2021)
Insights into the bacterial and fungal communities and microbiome that causes a microbe outbreak on ancient wall paintings in the Maijishan GrottoesInternational Biodeterioration & Biodegradation, 163
Yi Yang, Jingxuan Qiu, Xin Wang (2022)
Exploring the Dynamic of Bacterial Communities in Manila Clam (Ruditapes philippinarum) During Refrigerated StorageFrontiers in Microbiology, 13
E. Boquet, A. Boronat, A. Ramos‐Cormenzana (1973)
Production of Calcite (Calcium Carbonate) Crystals by Soil Bacteria is a General PhenomenonNature, 246
C. Lepinay, A. Mihajlovski, Stéphanie Touron, D. Seyer, F. Bousta, P. Martino (2018)
Bacterial diversity associated with saline efflorescences damaging the walls of a French decorated prehistoric cave registered as a World Cultural Heritage SiteInternational Biodeterioration & Biodegradation, 130
C. Seong, J. Choi, Keun-Shik Baik (2001)
An Improved Selective Isolation of Rare Actinomycetes from Forest SoilJournal of Microbiology, 39
Tamara Martin-Pozas, S. Cuezva, Á. Fernández-Cortés, J. Cañaveras, D. Benavente, V. Jurado, C. Saiz-Jimenez, I. Janssens, Naomi Seijas, S. Sánchez-Moral (2022)
Role of subterranean microbiota in the carbon cycle and greenhouse gas dynamics.The Science of the total environment
Mohsen Gozari, N. Bahador, A. Jassbi, M. Mortazavi, S. Hamzehei, E. Eftekhar (2019)
Isolation, distribution and evaluation of cytotoxic and antioxidant activity of cultivable actinobacteria from the Oman Sea sedimentsActa Oceanologica Sinica, 38
Carla Perez-Mon, B. Stierli, M. Plötze, B. Frey (2021)
Fast and persistent responses of alpine permafrost microbial communities to in situ warming.The Science of the total environment
W. Jaroszewicz, Patrycja Bielańska, Daria Lubomska, Katarzyna Kosznik-Kwaśnicka, P. Golec, Łukasz Grabowski, E. Wieczerzak, Weronika Dróżdż, Lidia Gaffke, Karolina Pierzynowska, G. Węgrzyn, A. Węgrzyn (2021)
Antibacterial, Antifungal and Anticancer Activities of Compounds Produced by Newly Isolated Streptomyces Strains from the Szczelina Chochołowska Cave (Tatra Mountains, Poland)Antibiotics, 10
G. Visioli, A. Sanangelantoni, T. Vamerali, C. Cortivo, M. Blandino (2018)
16S rDNA Profiling to Reveal the Influence of Seed-Applied Biostimulants on the Rhizosphere of Young Maize PlantsMolecules : A Journal of Synthetic Chemistry and Natural Product Chemistry, 23
Andrea Buresova-Faitova, J. Kopecký, M. Sagova-Mareckova, Lise Alonso, Florian Vautrin, Y. Moënne‐Loccoz, V. Rodriguez-Nava (2022)
Comparison of Actinobacteria communities from human‐impacted and pristine karst cavesMicrobiologyOpen, 11
V. Jurado, Y. Rosal, J. Gonzalez-Pimentel, B. Hermosin, C. Saiz-Jimenez (2020)
Biological Control of Phototrophic Biofilms in a Show Cave: The Case of Nerja CaveApplied Sciences
Jiaojiao Deng, Yong-bin Zhou, Wenxu Zhu, You Yin (2020)
Effects of afforestation with Pinus sylvestris var. mongolica plantations combined with enclosure management on soil microbial communityPeerJ, 8
Sheng Yang, Linfeng Wu, Bixian Wu, Yi-Zheng Zhang, Hai-yan Wang, X. Tan (2020)
Diversity and structure of soil microbiota of the Jinsha earthen relicPLoS ONE, 15
O. Adeyemo, A. Onilude (2018)
Antimicrobial Potential of a Rare Actinomycete Isolated from Soil: Crossiella sp.-EK18Journal of Advances in Microbiology
(2021)
Instalación de Sensores en Sótano Arqueológico del Museo Carmen
Yongmei Zhou, Ziqin Pang, Haifeng Jia, Zhaonian Yuan, R. Ming (2023)
Responses of roots and rhizosphere of female papaya to the exogenous application of GA3BMC Plant Biology, 23
Qianxin Deng, Tong Zhang, D. Xie, Yuheng Yang (2021)
Rhizosphere Microbial Communities Are Significantly Affected by Optimized Phosphorus Management in a Slope Farming SystemFrontiers in Microbiology, 12
Jiajiang Lin, F. He, B. Su, Mengqiang Sun, G. Owens, Zuliang Chen (2019)
The stabilizing mechanism of cadmium in contaminated soil using green synthesized iron oxide nanoparticles under long-term incubation.Journal of hazardous materials, 379
Yan Chen, Wei Tian, Y. Shao, Ying-Jun Li, Li-An Lin, Ying-Jun Zhang, Hui Han, Zhaojin Chen (2020)
Miscanthus cultivation shapes rhizosphere microbial community structure and function as assessed by Illumina MiSeq sequencing combined with PICRUSt and FUNGUIld analysesArchives of Microbiology, 202
Hongmao Jiang, Youchao Chen, Yang Hu, Ziwei Wang, Xu-yang Lu (2021)
Soil Bacterial Communities and Diversity in Alpine Grasslands on the Tibetan Plateau Based on 16S rRNA Gene Sequencing, 9
M. Rivadeneyra, A. Ramos‐Cormenzana, A. Garcia-Cervigon (1983)
Bacterial formation of struviteGeomicrobiology Journal, 3
(2016)
A modern approach to biodeterioration assessment and disinfection of historical book
(2021)
Análisis Descriptivo y Funcional de Las Colonias
Priyanka Kushwaha, J. Neilson, R. Maier, Alicja Babst-Kostecka (2021)
Soil microbial community and abiotic soil properties influence Zn and Cd hyperaccumulation differently in Arabidopsis halleri.The Science of the total environment, 803
O. Ezeokoli, C. Bezuidenhout, M. Maboeta, D. Khasa, R. Adeleke (2020)
Structural and functional differentiation of bacterial communities in post-coal mining reclamation soils of South Africa: bioindicators of soil ecosystem restorationScientific Reports, 10
Apirak Wiseschart, Wuttichai Mhuantong, S. Tangphatsornruang, D. Chantasingh, K. Pootanakit (2019)
Shotgun metagenomic sequencing from Manao-Pee cave, Thailand, reveals insight into the microbial community structure and its metabolic potentialBMC Microbiology, 19
Atsushi Takahashi, Kunimoto Hottan, Oriko Saito, M. Morioka, Yoshiro Okami, Hamao Umezawa (1986)
Production of novel antibiotic, dopsisamine, by a new subspecies of Nocardiopsis mutabilis with multiple antibiotic resistance.The Journal of antibiotics, 39 2
(2020)
Distribution characteristics and anti-radiation activity of culturable bacteria in black gobi ecosystem of the Hexi Corridor
K. Tiwari, Rajinder Gupta (2013)
Diversity and isolation of rare actinomycetes: an overviewCritical Reviews in Microbiology, 39
J. Donahue, N. Williams, S. Sells, D. Labeda (2002)
Crossiella equi sp. nov., isolated from equine placentas.International journal of systematic and evolutionary microbiology, 52 Pt 6
Liyuan Ma, Xinping Huang, Hongmei Wang, Y. Yun, Xiaoyu Cheng, Deng Liu, Xiaolu Lu, X. Qiu (2021)
Microbial Interactions Drive Distinct Taxonomic and Potential Metabolic Responses to Habitats in Karst Cave EcosystemMicrobiology Spectrum, 9
Moussa Louati, Nathaniel Ennis, Faten Ghodhbane-Gtari, Karima Hezbri, Joseph Sevigny, M. Fahnestock, H. Cherif-Silini, J. Bryce, L. Tisa, M. Gtari (2020)
Elucidating the ecological networks in stone-dwelling microbiomes.Environmental microbiology
M. Gacem, Aminata Ould-El-Hadj-Khelil, K. Abd-Elsalam, J. Wink (2021)
Actinobacteria in the Algerian Sahara: Diversity, adaptation mechanism and special unexploited biotopes for the isolation of novel rare taxaBiologia, 76
Cuezva (2022)
Role of subterranean microbiota in the carbon cycle and greenhouse gas dynamicsSci. Total Environ., 831
C. Obieze, P. George, B. Boyle, D. Khasa (2023)
Black pepper rhizomicrobiome: Spectrum of plant health indicators, critical environmental factors and community compartmentation in VietnamApplied Soil Ecology
Yin Gu, Haiying Zhang, Xiao-yan Liang, Rao Fu, Meng Li, Chuan-jie Chen (2022)
Impact of Biochar and Bioorganic Fertilizer on Rhizosphere Bacteria in Saline–Alkali SoilMicroorganisms, 10
Martha Hui, Loh Tan, V. Letchumanan, Ya-Wen He, Chee-Mun Fang, Kok-Gan Chan, Jodi Law, Learn‐Han Lee (2021)
The Extremophilic Actinobacteria: From Microbes to MedicineAntibiotics, 10
Jie Xie, Ze Wu, Xiaoyu Zhang, Tong Peng, Chunmei Yang, Jianjun Zhang, Jiaxin Liang (2021)
Diversity and structural characteristics of soil microbial communities in different habitats of wild Lilium regale Wilson in Wenchuan areaBioengineered, 12
Fei Ye, Xiaoxiao Wang, Yu Wang, Shengjun Wu, Jiapeng Wu, Yiguo Hong (2021)
Different pioneer plant species have similar rhizosphere microbial communitiesPlant and Soil, 464
Andrea Zamora-Quintero, M. Torres-Beltrán, Dulce Matus, Irasema Oroz-Parra, Natalie Millán-Aguiñaga (2022)
Rare actinobacteria isolated from the hypersaline Ojo de Liebre Lagoon as a source of novel bioactive compounds with biotechnological potentialMicrobiology, 168
Mabrouka Benhadj, D. Gacemi-Kirane, T. Menasria, Khaoula Guebla, Z. Ahmane (2019)
Screening of rare actinomycetes isolated from natural wetland ecosystem (Fetzara Lake, northeastern Algeria) for hydrolytic enzymes and antimicrobial activitiesJournal of King Saud University - Science
D. Labeda (2001)
Crossiella gen. nov., a new genus related to Streptoalloteichus.International journal of systematic and evolutionary microbiology, 51 Pt 4
(2023)
The microbiome of a 13th century Lan Na mural painting: Diversity, taxonomic distribution and their biodeterioration potentials. Microorganisms
Jun Li, Zelong Wu, Jun Yuan (2019)
Impact of agro-farming activities on microbial diversity of acidic red soils in a Camellia Oleifera ForestRevista Brasileira de Ciência do Solo
G. Pimentel, L. José (2019)
Microorganismos de las cuevas volcánicas de la palma (islas canarias): diversidad y potencial uso bioteconológico
Yongbin Li, Wenlong Gao, Caixia Wang, Miao Gao (2023)
Distinct distribution patterns and functional potentials of rare and abundant microorganisms between plastisphere and soils.The Science of the total environment
R. Subramani, W. Aalbersberg (2013)
Culturable rare Actinomycetes: diversity, isolation and marine natural product discoveryApplied Microbiology and Biotechnology, 97
Sergio Moral, J. Bedoya, L. Ripoll, J. Cañaveras, V. Jurado, L. Trobajo, C. Saiz-Jimenez (2003)
Biomineralisation of different crystalline phases by bacteria isolated from catacombs
Kaihui Liu, Xiaowei Ding, Jianjun Wang (2020)
Soil metabolome correlates with bacterial diversity and co-occurrence patterns in root-associated soils on the Tibetan Plateau.The Science of the total environment, 735
Xiaoning Gao, Zilin Wu, Rui Liu, Jiayun Wu, Qiaoying Zeng, Y. Qi (2019)
Rhizosphere Bacterial Community Characteristics over Different Years of Sugarcane Ratooning in Consecutive MonocultureBioMed Research International, 2019
S. Sánchez-Moral, J. Cañaveras, L. Láiz, C. Saiz-Jimenez, J. Bedoya, Luis Luque (2003)
Biomediated Precipitation of Calcium Carbonate Metastable Phases in Hypogean Environments: A Short ReviewGeomicrobiology Journal, 20
Haiying Ren, Mohammad Islam, Hongyan Wang, Hao Guo, Zhenshuo Wang, Xing-jiang Qi, Shuwen Zhang, Jun-Li Guo, Qi Wang, Bin Li (2022)
Effect of Humic Acid on Soil Physical and Chemical Properties, Microbial Community Structure, and Metabolites of Decline Diseased BayberryInternational Journal of Molecular Sciences, 23
J. Gonzalez-Pimentel, Irene Domínguez-Moñino, V. Jurado, L. Láiz, A. Caldeira, C. Saiz-Jimenez (2022)
The Rare Actinobacterium Crossiella sp. Is a Potential Source of New Bioactive Compounds with Activity against Bacteria and FungiMicroorganisms, 10
K. Kalbitz, K. Smalla, C. Vogel (2021)
Importance of microbial communities at the root-soil interface for extracellular polymeric substances and soil aggregation in semiarid grasslandsSoil Biology and Biochemistry
C. Riquelme, F. Rigal, J. Hathaway, D. Northup, M. Spilde, P. Borges, R. Gabriel, I. Amorim, M. Dapkevicius (2015)
Cave microbial community composition in oceanic islands: disentangling the effect of different colored mats in diversity patterns of Azorean lava caves.FEMS microbiology ecology, 91 12
J. Cañveras, S. Sánchez-Moral, V. Sloer, C. Saiz-Jimenez (2001)
Microorganisms and Microbially Induced Fabrics in Cave WallsGeomicrobiology Journal, 18
G. Nicolosi, J. Gonzalez-Pimentel, E. Piano, M. Isaia, A. Miller (2023)
First Insights into the Bacterial Diversity of Mount Etna Volcanic CavesMicrobial Ecology, 86
A. Assche, S. Crauwels, Joseph Brabanter, K. Willems, B. Lievens (2018)
Characterization of the bacterial community composition in water of drinking water production and distribution systems in Flanders, BelgiumMicrobiologyOpen, 8
Jiaojiao Deng, You Yin, Wenxu Zhu, Yong-bin Zhou (2020)
Response of soil environment factors and microbial communities to phytoremediation with Robinia pseudoacacia in an open‐cut magnesite mineLand Degradation & Development, 31
C. Weber (2015)
Reduced vertical stratification of soil bacterial community structure and composition is associated with Bromus tectorum invasion of sagebrush steppeJournal of Arid Environments, 115
(2014)
Study of the Bacterial Diversity on Ancient Mural Paintings from Kalliroi’s Fountain and Pana’s Sanctuary
Y. Yun, Hongmei Wang, Baiying Man, Xing Xiang, Jianping Zhou, X. Qiu, Yong Duan, A. Engel (2016)
The Relationship between pH and Bacterial Communities in a Single Karst Ecosystem and Its Implication for Soil AcidificationFrontiers in Microbiology, 7
Jaroszewicz (2022)
Antimicrobial activities of compounds produced by newly isolated Streptomyces strains from Mountain CavesMed. Sci. Forum, 12
Z. Liu, Yangang Yang, Shuang-quan Ji, Di Dong, Yinruizhi Li, Mengdi Wang, Liebao Han, Xueping Chen (2021)
Effects of Elevation and Distance from Highway on the Abundance and Community Structure of Bacteria in Soil along Qinghai-Tibet HighwayInternational Journal of Environmental Research and Public Health, 18
B. Jones, Xiaotong Peng (2014)
Abiogenic Growth of Needle-Fiber Calcite In Spring Towers At Shiqiang, Yunnan Province, ChinaJournal of Sedimentary Research, 84
S. Cuezva, S. Sánchez-Moral, C. Saiz-Jimenez, J. Cañaveras (2009)
Microbial Communities and Associated Mineral Fabrics in Altamira Cave, SpainInternational Journal of Speleology, 38
C. Lepinay, A. Mihajlovski, D. Seyer, Stéphanie Touron, F. Bousta, P. Martino (2017)
Biofilm communities survey at the areas of salt crystallization on the walls of a decorated shelter listed at UNESCO World cultural HeritageInternational Biodeterioration & Biodegradation, 122
Marta Maciejewska, I. Pessi, Anthony Arguelles-Arias, Pauline Noirfalise, G. Luis, M. Ongena, H. Barton, M. Carnol, S. Rigali (2015)
Streptomyces lunaelactis sp. nov., a novel ferroverdin A-producing Streptomyces species isolated from a moonmilk speleothemAntonie van Leeuwenhoek, 107
M. Rivadeneyra, I. Pérez-García, A. Ramos‐Cormenzana (1992)
Influence of ammonium ion on bacterial struvite productionGeomicrobiology Journal, 10
J. Bossolani, C. Crusciol, M. Leite, L. Merloti, L. Moretti, Isabô Pascoaloto, E. Kuramae (2021)
Modulation of the soil microbiome by long-term Ca-based soil amendments boosts soil organic carbon and physicochemical quality in a tropical no-till crop rotation systemSoil Biology and Biochemistry, 156
Beibei Chen, Shuo Jiao, Shuaiwei Luo, Beibei Ma, W. Qi, Changdong Cao, Zhiguang Zhao, G. Du, Xiaojun Ma (2020)
High soil pH enhances the network interactions among bacterial and archaeal microbiota in alpine grasslands of the Tibetan Plateau.Environmental microbiology
Xiaoyu Cheng, Xing Xiang, Y. Yun, Weiqi Wang, Hongmei Wang, P. Bodelier (2023)
Archaea and their interactions with bacteria in a karst ecosystemFrontiers in Microbiology, 14
F. Mohammadipanah, J. Wink (2016)
Actinobacteria from Arid and Desert Habitats: Diversity and Biological ActivityFrontiers in Microbiology, 6
Bao-Zhu Fang, Nimaichand Salam, Ming-Xian Han, Jian‐Yu Jiao, Juan Cheng, Da-Qiao Wei, Min Xiao, Wenjun Li (2017)
Insights on the Effects of Heat Pretreatment, pH, and Calcium Salts on Isolation of Rare Actinobacteria from Karstic CavesFrontiers in Microbiology, 8
S. Cuezva, Á. Fernández-Cortés, E. Porca, L. Pasic, V. Jurado, M. Hernández‐Mariné, P. Serrano-Ortiz, B. Hermosin, J. Cañaveras, S. Sánchez-Moral, C. Saiz-Jimenez (2012)
The biogeochemical role of Actinobacteria in Altamira Cave, Spain.FEMS microbiology ecology, 81 1
F. Jroundi, K. Elert, E. Ruiz-Agudo, M. González-Muñoz, C. Rodriguez-Navarro (2020)
Bacterial Diversity Evolution in Maya Plaster and Stone Following a Bio-Conservation TreatmentFrontiers in Microbiology, 11
B. Onac, L. Ghergari (1993)
Moonmilk Mineralogy in Some Romanian and Norwegian CavesCave science, 20
N. López-Lozano, Andrea Molinar, Elizabeth Durán, Maribel Rosales, V. Souza (2020)
Bacterial Diversity and Interaction Networks of Agave lechuguilla Rhizosphere Differ Significantly From Bulk Soil in the Oligotrophic Basin of Cuatro CienegasFrontiers in Plant Science, 11
Chao He, Rongrong Wang, W. Ding, Yong Li (2022)
Effects of cultivation soils and ages on microbiome in the rhizosphere soil of Panax ginsengApplied Soil Ecology
Zengwei Feng, Hui Sun, Yongqiang Qin, Yang Zhou, Honghui Zhu, Q. Yao (2023)
A synthetic community of siderophore-producing bacteria increases soil selenium bioavailability and plant uptake through regulation of the soil microbiome.The Science of the total environment
C. Saiz-Jimenez (2004)
Air Pollution and Cultural Heritage
(2020)
Microbial Communities Responses in Fluvial Biofilms under Metal Stressed Scenarios
A. Molinar (2017)
Efecto de factores abióticos y bióticos sobre la estructura de la comunidad microbiana del suelo en un ambiente oligotrófico
D. Labeda, M. Lechevalier (1989)
Amendment of the Genus Saccharothrix Labeda et al. 1984 and Descriptions of Saccharothrix espanaensis sp. nov., Saccharothrix cryophilis sp. nov., and Saccharothrix mutabilis comb. nov.International Journal of Systematic and Evolutionary Microbiology, 39
M. Manzoor, Balwant Singh, A. Agrawal, A. Arun, M. Mujeeburahiman, P. Rekha (2018)
Morphological and micro-tomographic study on evolution of struvite in synthetic urine infected with bacteria and investigation of its pathological biomineralizationPLoS ONE, 13
I. Groth, P. Schumann, L. Láiz, S. Sánchez-Moral, J. Cañveras, C. Saiz-Jimenez (2001)
Geomicrobiological Study of the Grotta dei Cervi, Porto Badisco, ItalyGeomicrobiology Journal, 18
Yuxiang Lin, Yaqi Zhang, Xin Liang, Renyan Duan, Li Yang, Yihuan Du, Lianfu Wu, Jiacheng Huang, Guohong Xiang, Jing Bai, Yu Zhen (2022)
Assessment of rhizosphere bacterial diversity and composition in a metal hyperaccumulator (Boehmeria nivea) and a nonaccumulator (Artemisia annua) in an antimony mineJournal of Applied Microbiology, 132
Qiang Li, Bingjian Zhang, Xiaoru Yang, Qinya Ge (2018)
Deterioration-Associated Microbiome of Stone Monuments: Structure, Variation, and AssemblyApplied and Environmental Microbiology, 84
G. Engelbrecht, S. Claassens, C. Mienie, H. Fourie (2021)
Screening of Rhizosphere Bacteria and Nematode Populations Associated with Soybean Roots in the Mpumalanga Highveld of South AfricaMicroorganisms, 9
Laurenz Schröer, T. Kock, V. Cnudde, N. Boon (2020)
Differential colonization of microbial communities inhabiting Lede stone in the urban and rural environment.The Science of the total environment, 733
W. Jaroszewicz, Patrycja Bielańska, Daria Lubomska, Katarzyna Kosznik-Kwaśnicka, P. Golec, Łukasz Grabowski, E. Wieczerzak, Weronika Dróżdż, Lidia Gaffke, Karolina Pierzynowska, Zuzanna Cyske, A. Węgrzyn, G. Węgrzyn (2022)
Antimicrobial Activities of Compounds Produced by Newly Isolated Streptomyces Strains from Mountain CavesECA 2022
Xuan Zhang, Wei-Bei Du, Ying Xu, Yonglong Wang (2022)
Soil bacterial diversity and function in semi-arid forest parks in Baotou CityBiodiversity Science
Marta Maciejewska, M. Całusińska, L. Cornet, D. Adam, I. Pessi, S. Malchair, P. Delfosse, D. Baurain, H. Barton, M. Carnol, S. Rigali (2018)
High-Throughput Sequencing Analysis of the Actinobacterial Spatial Diversity in Moonmilk DepositsAntibiotics, 7
Catarina Coelho, N. Mesquita, Inês Costa, F. Soares, J. Trovão, H. Freitas, A. Portugal, I. Tiago (2021)
Bacterial and Archaeal Structural Diversity in Several Biodeterioration Patterns on the Limestone Walls of the Old Cathedral of CoimbraMicroorganisms, 9
Victor Guerra, Lukas Beule, C. Mackowiak, J. Dubeux, A. Blount, Xiao-Bo Wang, D. Rowland, Hui-Ling Liao (2021)
Soil bacterial community response to rhizoma peanut incorporation into Florida pastures.Journal of environmental quality
Shinae Park, Yong-Joon Cho, Da-yea Jung, Kyung‐nam Jo, Eun-Jin Lee, Jung-Shin Lee (2020)
Microbial Diversity in Moonmilk of Baeg-nyong Cave, Korean CZOFrontiers in Microbiology, 11
J. Cañaveras, S. Cuezva, S. Sánchez-Moral, J. Lario, L. Láiz, J. Gonzalez, C. Saiz-Jimenez (2005)
On the origin of fiber calcite crystals in moonmilk depositsNaturwissenschaften, 93
A. Cirigliano, Mara Tomassetti, Marta Pietro, F. Mura, Maria Maneschi, M. Gentili, B. Cardazzo, C. Arrighi, C. Mazzoni, R. Negri, T. Rinaldi (2018)
Calcite moonmilk of microbial origin in the Etruscan Tomba degli Scudi in Tarquinia, ItalyScientific Reports, 8
A. Charola, C. McNamara, R. Koestler (2011)
Biocolonization of Stone: Control and Preventive Methods: Proceedings from the MCI Workshop Series
C. Tender, A. Haegeman, B. Vandecasteele, L. Clement, P. Cremelie, P. Dawyndt, M. Maes, J. Debode (2016)
Dynamics in the Strawberry Rhizosphere Microbiome in Response to Biochar and Botrytis cinerea Leaf InfectionFrontiers in Microbiology, 7
M. Goodfellow, I. Nouioui, R. Sanderson, Fei-Zhi Xie, A. Bull (2018)
Rare taxa and dark microbial matter: novel bioactive actinobacteria abound in Atacama Desert soilsAntonie van Leeuwenhoek, 111
S. Zada, Jianmin Xie, Min Yang, Xiaoyu Yang, W. Sajjad, M. Rafiq, F. Hasan, Zhong Hu, Hui Wang (2021)
Composition and functional profiles of microbial communities in two geochemically and mineralogically different cavesApplied Microbiology and Biotechnology, 105
D. Ghezzi, F. Sauro, A. Columbu, C. Carbone, P. Hong, F. Vergara, J. Waele, M. Cappelletti (2021)
Transition from unclassified Ktedonobacterales to Actinobacteria during amorphous silica precipitation in a quartzite cave environmentScientific Reports, 11
J. Osman, G. Fernandes, C. Regeard, Chloé Jaubert, M. Dubow (2018)
Examination of the Bacterial Biodiversity of Coastal Eroded Surface Soils from the Padza de Dapani (Mayotte Island)Geomicrobiology Journal, 35
(2021)
An á lisis Descriptivo y Funcional de Las Colonias Microbianas Visibles Que Crecen en la Cueva de Altamira
F. Stomeo, M. Portillo, José González, L. Láiz, C. Saiz-Jimenez (2008)
Pseudonocardia in white colonizations in two caves with Paleolithic paintingsInternational Biodeterioration & Biodegradation, 62
L. Martinet, Aymeric Naômé, L. Rezende, Déborah Tellatin, B. Pignon, J. Docquier, F. Sannio, D. Baiwir, G. Mazzucchelli, M. Frédérich, S. Rigali (2022)
Lunaemycins, New Cyclic Hexapeptide Antibiotics from the Cave Moonmilk-Dweller Streptomyces lunaelactis MM109TInternational Journal of Molecular Sciences, 24
Magdalena Dyda, Adam Pyzik, E. Wiłkojć, Beata Kwiatkowska-Kopka, A. Skłodowska (2019)
Bacterial and Fungal Diversity Inside the Medieval Building Constructed with Sandstone Plates and Lime Mortar as an Example of the Microbial Colonization of a Nutrient-Limited Extreme Environment (Wawel Royal Castle, Krakow, Poland)Microorganisms, 7
T. Taniguchi, K. Isobe, Shogo Imada, M. Eltayeb, Yasuaki Akaji, Masataka Nakayama, M. Allen, E. Aronson (2023)
Root endophytic bacterial and fungal communities in a natural hot desert are differentially regulated in dry and wet seasons by stochastic processes and functional traits.The Science of the total environment
Antonella Conte (2017)
Phylogenetic diversity and metabolic potential of prokaryotic communities in permafrost and brine pockets of perennially frozen Antarctic lakes (Northern Victoria Land)
Eric Banks, N. Taylor, J. Gulley, B. Lubbers, Juan Giarrizzo, Heather Bullen, T. Hoehler, H. Barton (2010)
Bacterial Calcium Carbonate Precipitation in Cave Environments: A Function of Calcium HomeostasisGeomicrobiology Journal, 27
M. Weng, E. Zaikova, M. Millan, A. Williams, A. McAdam, C. Knudson, S. Fuqua, N. Wagner, K. Craft, S. Nawotniak, A. Shields, J. Bevilacqua, Y. Bai, S. Hughes, W. Garry, J. Heldmann, D. Lim, D. Buckner, P. Gant, S. Johnson (2022)
Life Underground: Investigating Microbial Communities and Their Biomarkers in Mars‐Analog Lava Tubes at Craters of the Moon National Monument and PreserveJournal of Geophysical Research: Planets, 127
The Rhizosphere Microbiome Associated with the Legume Spartocytisus supranubius in the High Mountain Ecosystem of Teide
C. Pu, Hang Liu, Guo-chun Ding, Ying Sun, Xiaolu Yu, Jun-hao Chen, Jingyao Ren, Xiaoyan Gong (2018)
Impact of direct application of biogas slurry and residue in fields: In situ analysis of antibiotic resistance genes from pig manure to fields.Journal of hazardous materials, 344
P. Švec, Marcel Kosina, Michal Zeman, Pavla Holochová, S. Králová, E. Němcová, L. Micenková, Urvashi, Vipin Gupta, Utkarsh Sood, R. Lal, S. Korpole, I. Sedláček (2020)
Pseudomonas karstica sp. nov. and Pseudomonas spelaei sp. nov., isolated from calcite moonmilk deposits from caves.International journal of systematic and evolutionary microbiology
Marta Diaz-Herraiz, V. Jurado, S. Cuezva, L. Láiz, P. Pallecchi, P. Tiano, S. Sánchez-Moral, C. Saiz-Jimenez (2014)
Deterioration of an Etruscan tomb by bacteria from the order RhizobialesScientific Reports, 4
Marta Maciejewska, D. Adam, L. Martinet, Aymeric Naômé, M. Całusińska, P. Delfosse, M. Carnol, H. Barton, M. Hayette, Nicolas Smargiasso, E. Pauw, M. Hanikenne, D. Baurain, S. Rigali (2016)
A Phenotypic and Genotypic Analysis of the Antimicrobial Potential of Cultivable Streptomyces Isolated from Cave Moonmilk DepositsFrontiers in Microbiology, 7
Mingjing Ke, Nuohan Xu, Zhenyan Zhang, Danyan Qiu, Jian Kang, Tao Lu, Tingzhang Wang, W. Peijnenburg, Liwei Sun, Baolan Hu, H. Qian (2022)
Development of a machine-learning model to identify the impacts of pesticides characteristics on soil microbial communities from high-throughput sequencing data.Environmental microbiology
N. Rodríguez-Berbel, R. Ortega, M. Lucas‐Borja, A. Solé‐Benet, I. Miralles (2020)
Long-term effects of two organic amendments on bacterial communities of calcareous mediterranean soils degraded by mining.Journal of environmental management, 271
Sergio Moral, L. Ripoll, J. Cañaveras, L. Trobajo, V. Jurado, B. Hermosin, C. Saiz-Jimenez (2004)
Bioinduced barium precipitation in St. Callixtus and Domitilla catacombsAnnals of Microbiology, 54
N. Hui, Ningxiao Sun, Hongmei Du, Muhammad Umair, Hongzhang Kang, Xinxin Liu, M. Romantschuk, Chunjiang Liu (2019)
Karst rocky desertification does not erode ectomycorrhizal fungal species richness but alters microbial community structurePlant and Soil, 445
M. Chuvochina, I. Alekhina, P. Normand, J. Petit, S. Bulat (2011)
Three events of Saharan dust deposition on the Mont Blanc glacier associated with different snow-colonizing bacterial phylotypesMicrobiology, 80
Jiaojiao Deng, Yan Zhang, You Yin, Xueling Zhu, Wenxu Zhu, Yong-bin Zhou (2019)
Comparison of soil bacterial community and functional characteristics following afforestation in the semi-arid areasPeerJ, 7
Tamara Martin-Pozas, Á. Fernández-Cortés, S. Cuezva, J. Cañaveras, D. Benavente, Elsa Duarte, C. Saiz-Jimenez, S. Sánchez-Moral (2023)
New insights into the structure, microbial diversity and ecology of yellow biofilms in a Paleolithic rock art cave (Pindal Cave, Asturias, Spain).The Science of the total environment
Sania Arif, Heiko Nacke, Elias Schliekmann, A. Reimer, G. Arp, M. Hoppert (2021)
Composition and Niche-Specific Characteristics of Microbial Consortia Colonizing Marsberg Copper Mine in the Rhenish MassifBiogeosciences
L. Martinet, Aymeric Naômé, D. Baiwir, E. Pauw, G. Mazzucchelli, S. Rigali (2020)
On the Risks of Phylogeny-Based Strain Prioritization for Drug Discovery: Streptomyces lunaelactis as a Case StudyBiomolecules, 10
Angélica Jara-Servín, Adán Silva, Hugo Barajas, R. Cruz-Ortega, C. Tinoco-Ojanguren, L. Alcaraz (2022)
The Allelopathic Buffelgrass and its Rhizosphere MicrobiomeSSRN Electronic Journal
A. Solon, C. Mastrangelo, L. Vimercati, P. Sommers, J. Darcy, Eli Gendron, D. Porazinska, S. Schmidt (2021)
Gullies and Moraines Are Islands of Biodiversity in an Arid, Mountain Landscape, Asgard Range, AntarcticaFrontiers in Microbiology, 12
D. Adam, Marta Maciejewska, Aymeric Naômé, L. Martinet, W. Coppieters, L. Karim, D. Baurain, S. Rigali (2018)
Isolation, Characterization, and Antibacterial Activity of Hard-to-Culture Actinobacteria from Cave Moonmilk DepositsAntibiotics, 7
M. Sánchez‐Román, M. Rivadeneyra, C. Vasconcelos, J. Mckenzie (2007)
Biomineralization of carbonate and phosphate by moderately halophilic bacteria.FEMS microbiology ecology, 61 2
Xiaozhen Liu, Yu Liu, Lei Zhang, R. Yin, Gao-lin Wu (2021)
Bacterial contributions of bio-crusts and litter crusts to nutrient cycling in the Mu Us Sandy LandCatena, 199
K. Tiwari, D. Upadhyay, E. Mösker, R. Süssmuth, Rajinder Gupta (2015)
Culturable bioactive actinomycetes from the Great Indian Thar DesertAnnals of Microbiology, 65
Review Crossiella, a Rare Actinomycetota Genus, Abundant in the Environment 1 , † 2 , † 3 3 4 Tamara Martin-Pozas , Jose Luis Gonzalez-Pimentel , Valme Jurado , Leonila Laiz , Juan Carlos Cañaveras , 5 6 1 3 , Angel Fernandez-Cortes , Soledad Cuezva , Sergio Sanchez-Moral and Cesareo Saiz-Jimenez * Museo Nacional de Ciencias Naturales, MNCN-CSIC, 28006 Madrid, Spain Centro Andaluz de Biologia del Desarrollo (CABD, UPO-CSIC-JA), Facultad de Ciencias Experimentales, Departamento de Genetica, Universidad Pablo de Olavide, 41013 Sevilla, Spain Instituto de Recursos Naturales y Agrobiologia, IRNAS-CSIC, 41012 Sevilla, Spain Departamento de Ciencias de la Tierra y del Medio Ambiente, Universidad de Alicante, 03080 Alicante, Spain Departamento de Biologia y Geologia, Universidad de Almeria, 04120 Almeria, Spain; acortes@ual.es Departamento de Geologia, Geografia y Medio Ambiente, Universidad de Alcala, 28802 Alcala de Henares, Spain; soledad.cuezva@uah.es * Correspondence: saiz@irnase.csic.es † These authors contributed equally to this work. Abstract: The genus Crossiella contains two species, C. equi, causing nocardioform placentitis in horses, and C. cryophila, an environmental bacterium. Apart from C. equi, which is not discussed here, environmental Crossiella is rarely reported in the literature; thus, it has not been included among “rare actinobacteria”, whose isolation frequency is very low. After C. cryophila, only five reports cover the isolation of Crossiella strains. However, the frequency of published papers on environmental Crossiella has increased significantly in recent years due to the extensive use of next-generation sequencing (NGS) and a huge cascade of data that has improved our understanding of how bacteria occur in the environment. In the last five years, Crossiella has been found in different environments (caves, soils, plant rhizospheres, building stones, etc.). The high abundance of Crossiella in cave moonmilk indicates that this genus may have an active role in moonmilk formation, as evidenced by the precipitation Citation: Martin-Pozas, T.; of calcite, witherite, and struvite in different culture media. This review provides an overview of Gonzalez-Pimentel, J.L.; Jurado, V.; environmental Crossiella, particularly in caves, and discusses its role in biomineralization processes Laiz, L.; Cañaveras, J.C.; Fernandez-Cortes, A.; Cuezva, S.; and bioactive compound production. Sanchez-Moral, S.; Saiz-Jimenez, C. Crossiella, a Rare Actinomycetota Keywords: Crossiella; biofilms; caves; moonmilk; biomineralization; rhizosphere; soils; bioactive compounds Genus, Abundant in the Environment. Appl. Biosci. 2023, 2, 194–210. https://doi.org/10.3390/ applbiosci2020014 1. Introduction Academic Editor: Robert Henry The first strain included in the genus Crossiella has a long history of transfers and amendments. Takahashi et al. [1] studied the soil isolate Nocardiopsis mutabilis, capable of Received: 4 March 2023 producing novel antibiotics, and classified it as a new subspecies: Nocardiopsis mutabilis Revised: 24 April 2023 subsp. Cryophilis based on its growth at low temperatures (8–33 C). This strain was Accepted: 27 April 2023 subsequently transferred by Labeda and Lechevalier [2] to the genus Saccharothrix as Published: 6 May 2023 Saccharothrix cryophilis because its morphological and chemotaxonomical properties were more typical of the genus Saccharothrix than Nocardiopsis. In another study, Labeda [3] erected the genus Crossiella to accommodate the species Saccharothrix cryophilis, which was Copyright: © 2023 by the authors. misplaced within the genus Saccharothrix. The genus only contained the species Crossiella Licensee MDPI, Basel, Switzerland. cryophila, which was soon accompanied by Crossiella equi, responsible for causing abortion This article is an open access article cases in horses with equine nocardioform placentitis in Kentucky [4]. distributed under the terms and In the last 20 years, no other species of Crossiella have been described, with scarce conditions of the Creative Commons reports on the isolation of Crossiella strains in the literature. Sánchez-Moral [5] isolated a Attribution (CC BY) license (https:// few strains of Crossiella from Altamira Cave, Spain. Adeyemo and Onilude [6] described creativecommons.org/licenses/by/ a strain of Crossiella isolated from Nigerian soil with a broad spectrum of antimicrobial 4.0/). Appl. Biosci. 2023, 2, 194–210. https://doi.org/10.3390/applbiosci2020014 https://www.mdpi.com/journal/applbiosci Appl. Biosci. 2023, 2 195 activity. Cimermanova et al. [7] isolated nine actinobacteria collected from different heavy metal-contaminated soils and found that one strain could represent a new species within the genus Crossiella; however, they did not provide any characterization or description other than its position in the phylogenetic tree and that the strain differed from Crossiella cryophila in several biochemical properties. González-Riancho [8] isolated three Crossiella strains from white and grey biofilms from Altamira Cave. Finally, Gonzalez-Pimentel et al. [9] studied the genomes of two Crossiella strains selected from 13 strains previously isolated from Altamira Cave (unpublished report). The isolation of Crossiella strains on only five occasions in the last 10 years included this genus within the so-called “rare actinobacteria”. Oren and Garrity [10] considered Acti- nobacteria a synonym of Actinomycetota. They presented the names and formal descriptions of 42 phyla to effect valid publication in their names based on genera as nomenclatural types. However, in this paper, we maintained the original names, as previously published by each author, to avoid mistakes. “Rare actinobacteria” are non-Streptomyces actinobacteria whose isolation frequency is much lower than Streptomyces strains, commonly isolated by conventional methods [11,12]. Tiwari and Gupta [13,14] reported 120 new genera of “rare actinobacteria” in the first decade of the 21st century. A total of 40 out of 120 genera were isolated from soils with com- paratively lower percentages from other environments: marine and freshwater sediments, marine animals, plants, buildings, etc. A few reports included the rare genera Actinomadura, Nonomuraea, Micromonospora, Streptosporangium, Nocardiopsis, and Pseudonocardia as most frequent in diverse environments [15–20]. It is noteworthy that an abundance of “rare actinobacteria” is in extreme environments, as exemplified in Atacama [18] and other deserts [21–24]. However, Crossiella has not been included among “rare actinobacteria” thus far. We have found that Crossiella is an abundant genus in most studied Spanish caves, whether they are gypsum, karstic, or volcanic [9,25–27], and in other terrestrial and aquatic environments. In this paper, we review the occurrence of environmental Crossiella, its relative abun- dance in Spanish caves and other subterranean environments, as well as its involvement in caves’ mineral precipitation. The interest in Crossiella lies in its role in biomineralization and potential use in biotechnological processes (stone bioconsolidation, enzyme sources, bioactive compounds, etc.). 2. The Genus Crossiella in Caves Table 1 shows the occurrence of Crossiella in different Spanish caves. The high relative abundance of this genus is in moonmilk (Figure 1), either from karstic (Pindal) or volcanic (Fuente de la Canaria and Bucara II) caves, as well as in coloured biofilms (Pindal, Altamira, Castañar, Covadura) is remarkable [27–31]. The relative humidity is near 100% in these caves. In addition, other mineral/biological formations, such as a pink formation in Bucara II, exhibit high relative abundance (38.9%). Similarly, formations such as mucous formations or brown deposits also reach relatively high abundances (6.7–12.8%) [29]. Interestingly, low percentages of Crossiella found in the sediments under the moonmilk indicate an aerobic behaviour for this genus [3]. Crossiella was also found in phototrophic biofilms from Nerja Cave [30]. Table 1. Occurrence and relative abundance (>1%) of Crossiella in Spanish karstic environments, as reported in NGS studies. Cave Relative Abundance Genus Type of Sample References 16.0–27.1 Crossiella Moonmilk 1.4–1.7 Crossiella Sediment under moonmilk [26,28,31] Pindal 11.3–11.7 Crossiella Top-layer sediments Appl. Biosci. 2023, 2 196 Table 1. Cont. Cave Relative Abundance Genus Type of Sample References 6.0–9.0 Crossiella Sediments 5.3–7.9 Crossiella Yellow biofilm 2.0–8.0 Crossiella Grey biofilms 7.0–8.0 Crossiella Pink biofilms 12.6–12.8 Crossiella Mucous formations 12.3 Crossiella Moonmilk [29] Fuente de la Canaria 6.7 Crossiella Brown and yellow deposits 38.9 Crossiella Pink deposit Bucara II [29] 24.9 Crossiella Moonmilk Nerja 0.1–1.5 Crossiella Phototrophic biofilms [30] Castañar 15.0 Crossiella Grey biofilm [31] >20.0 Crossiella Grey biofilms Altamira 27.0 Crossiella White biofilms [30] 38.0 Crossiella Yellow biofilms 26.4–54.1 Crossiella White biofilm Covadura 21.8–51.9 Crossiella Yellow biofilm Unpublished data 4.5–19.7 Crossiella Sediments Yeso 1.3–13.3 Crossiella Sediments Unpublished data 16.6 Crossiella White biofilm Thyssen Museum 64.2 Crossiella Grey biofilm [32] basement Appl. Biosci. 2023, 2, FOR PEER REVIEW 4 2.8–7.4 Crossiella Sediment Figure 1. Scanning electron micrographs of moonmilk deposits in Pindal Cave, Spain. (a) Longitu- Figure 1. Scanning electron micrographs of moonmilk deposits in Pindal Cave, Spain. (a) Lon- dinal view of sediment covered by moonmilk. (b,c) Crystalline calcite fibres (red arrow) and Acti- gitudinal view of sediment covered by moonmilk. (b,c) Crystalline calcite fibres (red arrow) and nomycetota filaments (blue arrow). (d) Scanning electron micrographs and EDX spectra of crystal- Actinomycetota filaments (blue arrow). (d) Scanning electron micrographs and EDX spectra of crys- line calcite fibres . Note the swelling of filaments in (c), similar to those reported for Crossiella cry- ophila [3]. talline calcite fibres. Note the swelling of filaments in (c), similar to those reported for Crossiella cryophila [3]. Table 2 shows the widespread occurrence of Crossiella in caves in the USA, France and China. Less frequent records were found in caves in Italy, Pakistan, Portugal, Serbia, and Thailand, among other countries [35–57]. Table 2. Occurrence and relative abundance (>1%) of Crossiella in caves all over the world. Relative Karstic Caves Genus Type of Sample (Method) References Abundance% Heshang n.d. Crossiella Weathered rocks (NGS) [35] Laugerie-Haute 4.0 Crossiella Salt efflorescences (clones) [36] Sorcerers 30.0 Crossiella Salt efflorescences (NGS) [37] Pillier n.d. Crossiella Wall rock (NGS) [38] Yixing Shanjuan 3.9 Crossiella Speleothem (NGS) [39] Shuanghe 9.5 Crossiella Rock (NGS) [40] Manao-Pee 4.1 Crossiella Soil (NGS) [41] KN14 27.1–52.3 Crossiella Rock/Clay (NGS) [42] RN5 1.0–17.9 Crossiella Rock/Clay/Mud (NGS) [42] Maijishan Grottoes n.d. Crossiella Walls paintings (NGS) [43] Heshang n.d. Crossiella Weathered rocks (NGS) [44] Kashmir and Tiser 11.9–36.6 Crossiella Soil (NGS) [45] Zhijin 4.1 Crossiella Wall rock (NGS) [46] Rouffignac ~70.0 Crossiella Wall rock (NGS) [47] Stiffe 9.9 Crossiella Biofilms (NGS) [48] Heshang n.d. Crossiella Weathered rocks (NGS) [49] Appl. Biosci. 2023, 2 197 Crossiella, at a relative abundance of 15.0%, was found in grey biofilms from Castañar Cave [31]. Similar grey biofilms were observed in Altamira Cave [8] and the Thyssen Museum, reaching a relative abundance of 64.2% [32]. Data from a geomicrobiological study of a Roman nymphaeum located in the archaeological basement of the Thyssen Museum in Malaga, Spain, were also included in Table 1 due to its interest. The environmental conditions of this archaeological basement are special because they mix the characteristics of an environment heavily influenced by the natural underlying karst system with those of an enclosure located in an urban building. Apart from caves, it was remarkable that a subterranean environment, the Roman mortar pavement in the archaeological basement, was colonized by grey biofilms with a high relative abundance of Crossiella. This environment is characterized by permanent darkness, the absence of visits, and high relative humidity. Table 1 shows the occurrence of Crossiella in moonmilk, grey, yellow, pink and white biofilms, and sediments from different caves and subterranean environments. Crossiella is abundant in different types of rocks, either in volcanic (Fuente de la Canaria, Bucara II), karstic (Pindal, Nerja, Castañar, Altamira) or gypsum (Covadura, Yeso) caves. In addition to the studies in Table 1, authors have reported the occurrence of Crossiella using methodological approaches other than NGS. Stomeo et al. [33] found metaboli- cally active Crossiella in white biofilms from Ardales Cave, Malaga, Spain. Portillo and Gonzalez [34] identified Crossiella as a major metabolically active bacterium in the black crust of a shelter located in Aragon, Spain, and Sanchez-Moral [5] reported Crossiella in Altamira Cave. Table 2 shows the widespread occurrence of Crossiella in caves in the USA, France and China. Less frequent records were found in caves in Italy, Pakistan, Portugal, Serbia, and Thailand, among other countries [35–57]. Table 2. Occurrence and relative abundance (>1%) of Crossiella in caves all over the world. Relative Karstic Caves Genus Type of Sample (Method) References Abundance% Heshang n.d. Crossiella Weathered rocks (NGS) [35] Laugerie-Haute 4.0 Crossiella Salt efflorescences (clones) [36] Sorcerers 30.0 Crossiella Salt efflorescences (NGS) [37] Pillier n.d. Crossiella Wall rock (NGS) [38] Yixing Shanjuan 3.9 Crossiella Speleothem (NGS) [39] Shuanghe 9.5 Crossiella Rock (NGS) [40] Manao-Pee 4.1 Crossiella Soil (NGS) [41] KN14 27.1–52.3 Crossiella Rock/Clay (NGS) [42] RN5 1.0–17.9 Crossiella Rock/Clay/Mud (NGS) [42] Maijishan Grottoes n.d. Crossiella Walls paintings (NGS) [43] Heshang n.d. Crossiella Weathered rocks (NGS) [44] Kashmir and Tiser 11.9–36.6 Crossiella Soil (NGS) [45] Zhijin 4.1 Crossiella Wall rock (NGS) [46] Rouffignac ~70.0 Crossiella Wall rock (NGS) [47] Stiffe 9.9 Crossiella Biofilms (NGS) [48] Heshang n.d. Crossiella Weathered rocks (NGS) [49] Cave Church 0.1–4.9 Crossiella Fresco (NGS) [50] Volcanic Caves Azorean caves 18.6 Crossiella Biofilms (clones) [51] Appl. Biosci. 2023, 2 198 Table 2. Cont. Relative Karstic Caves Genus Type of Sample (Method) References Abundance% Hawaiian caves n.d. Crossiella Biofilms (NGS) [52] Californian caves n.d. Crossiella Biofilms (NGS) [53] Idahoan caves n.d. Crossiella Biofilms (NGS) [54] Sicilian caves 62.5–77.6 Crossiella Biofilms (NGS) [55] Other Cave Types Carlsbad Cavern n.d. Crossiella Rocks (clones) [56] Imawarì Yeuta n.d. Crossiella Patina/Speleothems (NGS) [57] n.d. Not determined. Apart from the high abundance in Spanish caves, the high relative abundance of Crossiella in Italian caves is also remarkable. In this regard, Nicolosi et al. [55] recorded high relative abundances in four Etna volcano caves. One of them ranged from 62.5 to 77.6%. Other notable abundances were found in the salt efflorescences of a French shelter [37] and in caves in the USA [42], France [47], Pakistan [45], and the Azores, Portugal [51]. Crossiella has been identified as one of the dominant bacterial phylotypes, with an in- creasing prevalence when global humidity conditions rise, in a research covering 1050 cave microbiomes worldwide (manuscript in preparation). 3. Crossiella in the Environment Supplementary Table S1 lists papers in the literature that use the keyword “Crossiella”, including Crossiella misspelling [58–146]. The occurrence of the genus Crossiella in different environments is significant. Papers reporting Crossiella equi and its involvement in animal diseases [4] were excluded. The papers listed in Supplementary Table S1 rely on molecular methods, except for five articles describing the properties of isolated strains [5–9]. The genus Crossiella shows a ubiquitous and extensive geographical distribution on all continents, including Antarctica, but not in Australia/Oceania, likely due to a lack of relevant studies. Fewer reports locate Crossiella in mines and reclaimed mine soils [7,120–124]. How- ever, the number of studies on its presence in soils and the rhizospheres of diverse plants is considerable. Several Crossiella findings in stones and building stones were also confirmed [125–138]. Finally, a few records in sea sediments and freshwaters were significant [139–146] because they included aquatic environments among Crossiella habitats. From Supplementary Table S1, we can conclude that Crossiella, in addition to caves, is relatively abundant in diverse environments, namely soils, plant rhizospheres, mines, building stones, and other occasional habitats, but is rarely isolated. Considering the abundance of reports on Crossiella in soils [58–96] and plant rhizo- spheres [97–119], the presence of this genus in caves and other subterranean environments could be attributed to its transport to the subsurface via percolation waters. In this regard, Crossiella in percentages <1% have been found in drip waters from Pindal Cave [28]. It may be possible that once transported to the caves, the environmental conditions favour and increase the colonization and growth of Crossiella on different mineral substrata. 4. Crossiella Isolates Only five reports shed light on Crossiella isolates. A screening of Nigerian soils resulted in the isolation of Crossiella sp. strain EK18. The 16S rRNA nucleotide sequence showed 98% similarity to C. equi. This strain grew well in different culture media and exhibited broad-spectrum antimicrobial activity [6]. The authors studied the effects of pH, temperature, carbon and nitrogen sources, sodium chloride concentration, and incubation time on antimicrobial activity. In addition, they reported a list of 12 so-called antimicrobial Appl. Biosci. 2023, 2 199 metabolites, including alkanes, alkenes, commonly synthesized by bacteria, and phthalates, which are contaminants from materials and impurities from products used in culture media. Therefore, no conclusive data on the real bioactive compounds produced by the Crossiella strain can be derived from this study. Cimermanova et al. [7] isolated Crossiella sp., strain S2, from mining wastes, with a 16rRNA gene sequence similarity of 99.1% to C. cryophila. The authors suggested that it may represent a novel, never described species, based on its location in the phylogenetic tree. The strain also exhibited high heavy metal resistance. González-Riancho [8] found relative abundances of Crossiella >20% in white, yellow, and grey biofilms from Altamira Cave. She isolated two strains from white and one strain from grey biofilms with similarities of 99.0–100.0 to C. cryophila using the medium Actinomycete Isolation Agar (AIA). Gonzalez-Pimentel et al. [9] studied two of the thirteen Crossiella strains previously isolated from grey biofilms colonizing Altamira Cave, Spain (unpublished report). In vitro and in silico analyses showed the inhibition of pathogenic bacteria and fungi. The exclusive combination of gene clusters involved in the synthesis of lanthipeptides, lasso peptides, nonribosomal peptides and polyketides indicates that these two strains represent a source of new bioactive compounds. The taxonomical distance of both strains from their closest relative, C. cryophila, suggests that they represent a new species of Crossiella, which will be described in future works. So far, the low number of isolated Crossiella strains indicates that most of the culture media used are inadequate to reproduce their growth in the laboratory. The environmental conditions of their ecological niche should also be considered when designing specific culture media, which are superior to conventional ones. 5. Biomineralization in Caves Induced by Crossiella Biomineralization or crystal formation is a general phenomenon caused by soil bacteria, as reported by Boquet et al. [147]. These authors isolated 210 bacteria that could form calcite crystals in a medium with calcium acetate and stated that their occurrence depended on the composition of the medium used. The role of bacteria in speleogenesis has been discussed for decades. Barton and Northup [148] stated that in the 1960s, a few authors proposed that microbes played a role in forming cave deposits. Banks et al. [149] confirmed the link between calcium metabolism 2+ in bacteria and calcification using cave isolates. They suggested that the toxicity of Ca 2+ ions to bacteria promoted the need to remove Ca ions from the cell via calcification as a detoxification mechanism. Further evidence of biomineralization has been reported in recent decades that sheds light on microbially induced mineral precipitation [150–153]. This precipitation has been attributed to several causes: the modulation of environmental pH, nucleation sites on cell surfaces, or enzymatically driven processes involving carbonic anhydrase, urease, etc. [154]. Grey biofilms from Altamira Cave were studied, and scanning electron microscopy (SEM) revealed an abundance of bioinduced calcite crystals in addition to moonmilk [152]. The biofilms mainly comprised Actinomycetota filaments promoting carbon dioxide uptake and formation of calcite deposits. A model for bioinduced calcite formation, supported by scanning and transmission electron microscopy data, was proposed by Cuezva et al. [152]. Apart from the precipitation of calcite by Crossiella, another experiment (Figure 2) with two strains of Crossiella isolated from Altamira Cave [9] revealed that both strains induced the formation of different crystals when incubated in a culture medium with barium acetate, yeast extract, and agar (Ba1). Two crystal types were identified on the plates: witherite (barium carbonate) and struvite (magnesium ammonium phosphate), with distinct abundances that were higher for witherite and scarcer for struvite. Witherite precipitation is due to an abundance of barium in the medium. Occasional struvite crystals can be derived from the amino acids and minor amounts of phosphorus and magnesium in the yeast extract [155]. Appl. Biosci. 2023, 2, FOR PEER REVIEW 7 Appl. Biosci. 2023, 2 200 tals can be derived from the amino acids and minor amounts of phosphorus and magne- sium in the yeast extract [155]. Figure 2. Scanning electron micrographs and EDX spectra of barium carbonate and phosphate Figure 2. Scanning electron micrographs and EDX spectra of barium carbonate and phosphate crystals from two strains of Crossiella sp. (Cross-1 and Cross-2) [7]. (a) Witherite (barium carbonate) crystals from two strains of Crossiella sp. (Cross-1 and Cross-2) [7]. (a) Witherite (barium carbonate) crystals and Crossiella filaments in culture medium Ba1 (Cross -1). (b) Witherite crystals in culture m crystals edium and Ba1 Cr (Cr ossiella oss-2).filaments (c) Struvite in (mag cultur nesi e me um dium amm Ba1 oniu (Cr m oss-1). phosph(ate) b) W crystal itherits ein crystals culture in mcultur edium e medium Ba1 (Cross-2). (c) Struvite (magnesium ammonium phosphate) crystals in culture medium Ba1 (Cross-1). (d) Crossiella filaments without crystal formation in tryptic soy agar medium (Cross-2). Appl. Biosci. 2023, 2 201 Baryte (barium sulphate) precipitation by bacteria was previously reported by Joubert et al. [156]. Sanchez-Moral et al. [157] found that baryte was associated with filamentous bacteria in altered volcanic rocks. Agromyces spp., Bacillus spp., Lysobacter spp., Ralstonia sp., Stenotrophomonas maltophilia, and Streptomyces sp. were isolated from the volcanic rocks and precipitated witherite or calcite/vaterite in media with barium or calcium acetate, respectively. The occurrence of baryte, but not witherite, in volcanic rocks was due to the presence of sulphate ions that easily transform witherite into barite. This transformation was not produced on the Crossiella plates without sulphate ions. Struvite precipitation is not as widespread as calcite or witherite in bacteria. Sanchez- Moral et al. [158] tested eight bacteria isolated from the Roman catacombs of St. Callixtus and Domitilla and reported that Agromyces ramosus precipitated calcite, magnesium calcite, witherite, and struvite, depending on the media composition. Other bacteria precipitating struvite were Bacillus sp. and Ralstonia metallidurans. Rivadeneyra et al. [159] found that only 20.8% of the tested bacterial isolates pre- cipitated struvite and that calcium acetate appeared to inhibit struvite precipitation in culture media, whereas ammonium ions triggered it [160]. Manzoor et al. [161] stated that urease-producing bacteria play a key role in struvite precipitation, controlling nucleation, and modulating crystalline phases and crystal shapes. Urease is present in the strain type of Crossiella, C. cryophila [3], and urease genes have been identified in the genomes of the two Crossiella strains from Altamira Cave [9]. Sánchez-Román et al. [162] reported that carbon and phosphorus cycles are interrelated during biomineralization. They also demonstrated the co-precipitation of carbonate and struvite, which we also found in Crossiella strains. The data reported show that biomineralization by Crossiella is an active process in the presence of different ions, confirming its role in moonmilk formation. Crossiella strains’ ability to induce carbonate precipitation, which is used to consolidate cultural heritage stones and buildings, should be explored. 6. Moonmilk Formation Moonmilk formation has been discussed in the literature for a long time [150,163–168]. The question: Is moonmilk an abiotic process driven physicochemically, or is it biotic, mediated by microorganisms? A biological origin currently prevails; even a combination of physicochemical and biogenic processes is being considered [166]. Cañaveras et al. [150,165] indicated that bacteria influenced the physicochemistry of calcite precipitation. They ob- served that cave moonmilk comprises a network of calcite crystals and active filamentous bacteria. They also found that hydromagnesite and needle-fibre aragonite deposits were associated with bacteria in Altamira Cave, predominantly Streptomyces, for which they demonstrated their ability to precipitate calcite/vaterite in the laboratory. The association between bacteria and mineral crystals was reported in other papers and described using SEM [152,153,165,168–170]. In addition, different bacterial genera such as Agromyces, Amy- colatopsis, Brachybacterium, Nocardioides, Nocardiopsis, Paenibacillus, and Rothia precipitated vaterite/calcite and Mg-calcite [171]. Maciejewska et al. [153] found that all the Streptomyces strains tested could promote calcification and biomineralization. The metabolic activities involved in the precipita- tion were amino acids ammonification and ureolysis, which increased environmental pH. Sanchez-Moral et al. [169] stated that microbial activity induces carbonate precipitation in the early stages of deposition. However, as carbonate accumulates, a progressive decline in microbial activity occurs, as deduced from the RNA/DNA ratio, which is used as a marker of metabolic activity. The decreased metabolic activity is due to the progressive accumulation of carbonate and bacterial entrapment in mineral deposits. The high relative abundance of Crossiella in moonmilk from different caves indicates that this genus is active in moonmilk formation (Table 1). Enzymatic processes induce this mineralization, and several enzymes have been linked to Crossiella activity in moon- milk. Martin-Pozas et al. [26] suggested that moonmilk formation is related to syntrophic Appl. Biosci. 2023, 2 202 relationships between Crossiella and nitrifying bacteria, and Cuezva et al. [27] associated Crossiella with the ability to capture CO from the atmosphere and precipitate calcium carbonate as a by-product of carbonic anhydrase action, as observed in cave moonmilk. 7. Is Moonmilk a Source of Bioactive Compounds? Caves and moonmilk are colonized by complex bacterial communities. Maciejewska et al. [153] reported that Proteobacteria was the dominant phylum of moonmilk from a Belgian cave, followed by Actinobacteria, Acidobacteria, Chloroflexi, Nitrospirae, Gem- matimonadetes, and Planctomycetes. These seven phyla accounted for 85.8–90.2% of the total community. Martin-Pozas et al. [26] investigated the moonmilk composition from Pindal Cave in Spain. They found that Proteobacteria and Actinobacteria dominated the community with over 30% of relative abundance for each phyla, followed by Acidobacteria, Chloroflexi, Planctomycetes, Gemmatimonadetes, and Nitrospirae. These phyla accounted for 93.1–93.9% of the total community. The similarities between the phyla compositions of moonmilk from two different caves are remarkable. Moonmilk from a geographically distant cave [172] and another subterranean environment [173] also showed relatively similar phyla compositions. Moonmilk has been a promising reservoir for novel bacteria producing bioactive compounds, and a few novel species have been isolated, namely Streptomyces lunaelac- tis [174], Pseudomonas karstica, and Pseudomonas spelaei [175]. Several studies have stressed the great diversity of unknown bacteria inhabiting moonmilk and the isolates’ production of bioactive compounds [176–178]. The high abundance of Actinomycetota (=Actinobacteria) and Pseudomonadota (=Pro- teobacteria) in moonmilk has prompted researchers to test a series of strategies to isolate hard-to-culture “rare actinobacteria” and discover novel bioactive compounds [13,14]. Adam et al. [176] obtained 40 isolates represented by Agromyces, Amycolatopsis, Kocuria, Micrococcus, Micromonospora, Nocardia, Streptomyces, and Rhodococcus species. The Strep- tomyces isolates displayed strong inhibitory activities against Gram-positive and Gram- negative bacteria and fungi [179]. Genome mining of Streptomyces lunaelactis revealed 42 biosynthetic gene clusters [180] and the production of the antibiotics bagremycins and lunaemycins [180,181]. The genome of Crossiella, abundant in moonmilk [26], showed the presence of a combination of gene clusters involved in synthesising different bioactive com- pounds [9]. The data suggest the possibility of finding other moonmilk bacteria involved in synthesising bioactive compounds. 8. Conclusions The genus Crossiella is widely distributed in all environments, reaching a relative abundance of up to 78% in a Sicilian cave. Its occurrence in soils, plant rhizospheres and caves is especially important. The last case is probably due to its transport to the subsurface by percolating waters. Despite this abundance, the strains isolated were scarce. The data suggest that more environmental Crossiella species are waiting to be described, apart from Crossiella cryophila and Crossiella equi. The increasing number of metagenomic sequence data from all environments offers clear opportunities to guide the isolation and cultivation of Crossiella. Therefore, further efforts are required to design suitable isolation culture media. They should consider the environmental conditions of the niches where Crossiella thrives, namely alkaline pH and high mineral concentrations. Crossiella has an important role in carbon sequestration in subterranean environments. Metagenomic studies and isolating more Crossiella strains and/or species are the only way to advance knowledge of Crossiella functions in different ecosystems. Furthermore, its role in biomineralization and moonmilk formation is also apparent. Finally, Crossiella appears to be a promising source of active compounds, and the isolated strains deserve more attention regarding their potential use in biotechnological processes. Appl. Biosci. 2023, 2 203 Supplementary Materials: The following supporting information can be downloaded at: https:// www.mdpi.com/article/10.3390/applbiosci2020014/s1, Table S1: Occurrence of the genus Crossiella in different environments. Author Contributions: Conceptualization, C.S.-J. and S.S.-M.; investigation, T.M.-P., J.L.G.-P., V.J., L.L., J.C.C., A.F.-C. and S.C.; writing—original draft preparation, C.S.-J., S.S.-M. and T.M.-P.; writing— review and editing, C.S.-J. and S.S.-M. All authors have read and agreed to the published version of the manuscript. Funding: This research was funded by the projects PID2020-114978GB-I00 and PID2019-110603RB-I00. The Malaga City Council financed data from the archaeological basement of the Thyssen Museum of Malaga through a conservation contract for this Roman site. Institutional Review Board Statement: Not applicable. Informed Consent Statement: Not applicable. Data Availability Statement: All data reported in this review can be found in the relevant papers cited. Scanning electron micrographs, EDX spectra, and unpublished data are available on request from Sergio Sanchez-Moral. Acknowledgments: This is a contribution from CSIC Interdisciplinary Thematic Platform Open Heritage: Research and Society (PTI-PAIS). Conflicts of Interest: The authors declare no conflict of interest. References 1. Takahashi, A.; Hotta, K.; Saito, N.; Morioka, M.; Okami, Y.; Umezawa, H. Production of novel antibiotic, dopsisamine, by a new subspecies of Nocardiopsis mutabilis with multiple antibiotic resistance. J. Antibiot. 1986, 39, 175–183. [CrossRef] [PubMed] 2. Labeda, D.P.; Lechevalier, M.P. Amendment of the genus Saccharothrix Labeda et al. 1984 and descriptions of Saccharothrix espanaensis sp. nov., Saccharothrix cryophilis sp. nov., and Saccharothrix mutabilis comb. nov. Int. J. Syst. Bacteriol. 1989, 39, 420–423. [CrossRef] 3. Labeda, D.P. Crossiella gen. nov., a new genus related to Streptoalloteichus. Int. J. Syst. Evol. Microbiol. 2001, 51, 575–579. [CrossRef] 4. Donahue, J.M.; Williams, N.M.; Sells, S.F.; Labeda, D.P. Crossiella equi sp. nov., isolated from equine placentas. Int. J. Syst. Evol. Microbiol. 2002, 52, 2169–2173. 5. Sánchez-Moral, S. Estudio Integral del Estado de Conservación de la Cueva de Altamira y su Arte Paleolítico (2007–2009). Perspectivas Futuras de Conservación; Monografías N 24; Museo Nacional y Centro de Investigación de Altamira: Santillana del Mar, Spain, 2014. 6. Adeyemo, O.M.; Onilude, A.A. Antimicrobial potential of a rare actinomycete isolated from soil: Crossiella sp.-EK18. J. Adv. Microbiol. 2018, 11, 1–15. [CrossRef] 7. Cimermanova, M.; Pristas, P.; Piknova, M. Biodiversity of actinomycetes from heavy metal contaminated technosols. Microorgan- isms 2021, 9, 1635. [CrossRef] 8. González-Riancho Fernández, C. Análisis Descriptivo y Funcional de Las Colonias Microbianas Visibles Que Crecen en la Cueva de Altamira, Enfocado al Diseño de Medidas de Control. Ph.D. Thesis, Universidad de Cantabria, Santander, Spain, 2021. 9. Gonzalez-Pimentel, J.L.; Dominguez-Moñino, I.; Jurado, V.; Laiz, L.; Caldeira, A.T.; Saiz-Jimenez, C. The rare actinobacterium Crossiella sp. is a potential source of new bioactive compounds with activity against bacteria and fungi. Microorganisms 2022, 10, 1575. [CrossRef] 10. Oren, A.; Garrity, G.M. Valid publication of the names of forty-two phyla of prokaryotes. Int. J. Syst. Evol. Microbiol. 2021, 71, 005056. [CrossRef] [PubMed] 11. Berdy, J. Bioactive microbial metabolites. J. Antibiot. 2005, 58, 1–26. [CrossRef] 12. Subramani, R.; Aalbersberg, W. Culturable rare Actinomycetes: Diversity, isolation and marine natural product discovery. Appl. Microbiol. Biotechnol. 2013, 97, 9291–9321. [CrossRef] 13. Tiwari, K.; Gupta, R.K. Rare actinomycetes: A potential storehouse for novel antibiotics. Crit. Rev. Biotechnol. 2012, 32, 108–132. [CrossRef] 14. Tiwari, K.; Gupta, R.K. Diversity and isolation of rare actinomycetes: An overview. Crit. Rev. Microbiol. 2013, 39, 256–294. [CrossRef] [PubMed] 15. Seong, C.N.; Choi, J.H.; Baik, K.-S. An improved selective isolation of rare actinomycetes from forest soil. J. Microbiol. 2001, 39, 17–23. 16. Bredholdt, H.; Galatenko, O.A.; Engelhardt, K.; Fjærvik, E.; Terekhova, L.P.; Zotchev, S.B. Rare actinomycete bacteria from the shallow water sediments of the Trondheim Fjord, Norway: Isolation, diversity and biological activity. Environ. Microbiol. 2007, 9, 2756–2764. [CrossRef] Appl. Biosci. 2023, 2 204 17. Fang, B.-Z.; Salam, N.; Han, M.-X.; Jiao, J.-Y.; Cheng, J.; Wei, D.-Q.; Xiao, M.; Li, W.-J. Insights on the effects of heat pretreatment, pH, and calcium salts on isolation of rare actinobacteria from karstic caves. Front. Microbiol. 2017, 8, 1535. [CrossRef] [PubMed] 18. Goodfellow, M.; Nouioui, I.; Sanderson, R.; Xie, F.; Bull, A.T. Rare taxa and dark microbial matter: Novel bioactive actinobacteria abound in Atacama Desert soils. Anton. Leeuw. 2018, 111, 1315–1332. [CrossRef] 19. Benhadj, M.; Gacemi-Kirane, D.; Menasria, T.; Guebla, K.; Ahmane, Z. Screening of rare actinomycetes isolated from natural wetland ecosystem (Fetzara Lake, northeastern Algeria) for hydrolytic enzymes and antimicrobial activities. J. King Saud Univ. Sci. 2019, 31, 706–712. [CrossRef] 20. Zamora-Quintero, A.Y.; Torres-Beltrán, M.; Guillén Matus, D.G.; Oroz-Parra, I.; Millán-Aguiñaga, N. Rare actinobacteria isolated from the hypersaline Ojo de Liebre Lagoon as a source of novel bioactive compounds with biotechnological potential. Microbiology 2022, 168, 001144. [CrossRef] 21. Tiwari, K.; Upadhyay, D.J.; Mösker, E.; Süssmuth, R.; Gupta, R.K. Culturable bioactive actinomycetes from the Great Indian Thar Desert. Ann. Microbiol. 2015, 65, 1901–1914. [CrossRef] 22. Mohammadipanah, F.; Wink, J. Actinobacteria from arid and desert habitats: Diversity and biological activity. Front. Microbiol. 2016, 6, 1541. [CrossRef] 23. Gacem, M.A.; Ould-El-Hadj-Kheli, A.; Abd-Elsalam, K.A.; Wink, J. Actinobacteria in the Algerian Sahara: Diversity, adaptation mechanism and special unexploited biotopes for the isolation of novel rare taxa. Biologia 2001, 76, 3787–3799. [CrossRef] 24. Hui, M.L.-Y.; Tan, L.T.-H.; Letchumanan, V.; He, Y.-W.; Fang, C.-M.; Chan, K.-G.; Law, J.W.-F.; Lee, L.-H. The extremophilic Actinobacteria: From microbes to medicine. Antibiotics 2021, 10, 682. [CrossRef] [PubMed] 25. Gonzalez-Pimentel, J.L.; Martin-Pozas, T.; Jurado, V.; Miller, A.Z.; Caldeira, A.T.; Fernandez-Lorenzo, O.; Sanchez-Moral, S.; Saiz-Jimenez, C. Prokaryotic communities from a lava tube cave in La Palma Island (Spain) are involved in the biogeochemical cycle of major elements. PeerJ 2021, 9, e11386. [CrossRef] [PubMed] 26. Martin-Pozas, T.; Cuezva, S.; Fernandez-Cortes, A.; Cañaveras, J.C.; Benavente, D.; Jurado, V.; Saiz-Jimenez, C.; Janssens, I.; Seijas, N.; Sanchez-Moral, S. Role of subterranean microbiota in the carbon cycle and greenhouse gas dynamics. Sci. Total Environ. 2022, 831, 154921. [CrossRef] 27. Cuezva, S.; Martin-Pozas, T.; Fernandez-Cortes, A.; Cañaveras, J.C.; Janssens, I.; Sanchez-Moral, S. On the role of cave-soil in the carbon cycle. A first approach. EGU Gen. Assem. 2020. Available online: https://presentations.copernicus.org/EGU2020/EGU2 020-21793_presentation.pdf. (accessed on 22 April 2022). 28. Martin-Pozas, T.; Fernandez-Cortes, A.; Cuezva, S.; Cañaveras, J.C.; Benavente, D.; Duarte, E.; Saiz-Jimenez, C.; Sanchez-Moral, S. New insights into the structure, microbial diversity and ecology of yellow biofilms in a Paleolithic rock art cave (Pindal Cave, Asturias, Spain). Sci. Total Environ. 2023, 882. in press. 29. González-Pimentel, J.L. Microorganismos de las Cuevas Volcánicas de La Palma (Islas Canarias). Diversidad y Potencial Uso Biotecnológico. Ph.D. Thesis, Universidad Pablo Olavide, Sevilla, Spain, 2019. 30. Jurado, V.; del Rosal, Y.; Gonzalez-Pimentel, J.L.; Hermosin, B.; Saiz-Jimenez, C. Biological control of phototrophic biofilms in a show cave: The case of Nerja Cave. Appl. Sci. 2020, 10, 3448. [CrossRef] 31. Martin-Pozas, T. Papel de los Microorganismos en Procesos de Captación y Emisión de Gases de Efecto Invernadero en Ambientes Subterráneos. Ph.D. Thesis, Universidad Complutense de Madrid, Madrid, Spain, 2023. 32. Sánchez-Moral, S.; Martín-Pozas, T.; Seijas Morales, N.; Fernández-Cortés, A.; Benavente García, D.; Cañaveras Jiménez, J.C.; Cuezva, S. Instalación de Sensores en Sótano Arqueológico del Museo Carmen Thyssen de Málaga Para la Toma de Datos, el Análisis y Adopción de Medidas Correctoras del Deterioro Del Recinto; Unpublished Report; MNCN: Madrid, Spain, 2021. 33. Stomeo, F.; Portillo, M.C.; Gonzalez, J.M.; Laiz, L.; Saiz-Jimenez, C. Pseudonocardia in white colonizations in two caves with Paleolithic paintings. Int. Biodeter. Biodegr. 2008, 62, 483–486. [CrossRef] 34. Portillo, M.C.; Gonzalez, J.M. Microbial community diversity and the complexity of preserving cultural heritage. In Biocolonization of Stone: Control and Preventive Methods; Charola, A.E., McNamara, C., Koestler, R.J., Eds.; Smithsonian Institution, Scholarly Press: Washington, DC, USA, 2011; pp. 19–28. 35. Yun, Y.; Wang, H.; Man, B.; Xiang, X.; Zhou, J.; Qiu, X.; Duan, Y.; Engel, A.S. The relationship between ph and bacterial communities in a single karst ecosystem and its implication for soil acidification. Front. Microbiol. 2016, 7, 1955. [CrossRef] [PubMed] 36. Lepinay, C.; Mihajlovski, A.; Seyer, D.; Touron, S.; Bousta, F.; Di Martino, P. Biofilm communities survey at the areas of salt crystallization on the walls of a decorated shelter listed at UNESCO World cultural Heritage. Int. Biodeter. Biodegr. 2017, 122, 116–127. [CrossRef] 37. Lepinay, C.; Mihajlovski, A.; Touron, S.; Seyer, D.; Bousta, F.; Di Martino, P. Bacterial diversity associated with saline efflorescences damaging the walls of a French decorated prehistoric cave registered as a World Cultural Heritage Site. Int. Biodeter. Biodegr. 2018, 130, 55–64. [CrossRef] 38. Alonso, L.; Pommier, T.; Kaufmann, B.; Dubost, A.; Chapulliot, D.; Doré, J.; Douady, C.J.; Moënne-Loccoz, Y. Anthropization level of Lascaux Cave microbiome shown by regional-scale comparisons of pristine and anthropized caves. Mol. Ecol. 2019, 28, 3383–3394. [CrossRef] [PubMed] 39. Li, M.; Fang, C.; Kawasaki, S.; Huang, M.; Achal, V. Bio-consolidation of cracks in masonry cement mortars by Acinetobacter sp. SC4 isolated from a karst cave. Int. Biodeter. Biodegr. 2019, 141, 94–100. [CrossRef] Appl. Biosci. 2023, 2 205 40. Long, Y.; Jiang, J.; Hu, X.; Zhou, J.; Hu, J.; Zhou, S. Actinobacterial community in Shuanghe Cave using culture-dependent and -independent approaches. World J. Microbiol. Biotechnol. 2019, 35, 153. [CrossRef] 41. Wiseschart, A.; Mhuantong, W.; Tangphatsornruang, S.; Chantasingh, D.; Pootanakit, K. Shotgun metagenomic sequencing from Manao-Pee cave, Thailand, reveals insight into the microbial community structure and its metabolic potential. BMC Microbiol. 2019, 19, 144. [CrossRef] [PubMed] 42. Frazier, V.E. Carbon Metabolism in Cave Subaerial Biofilms. Master ’s Thesis, University of Tennessee, Knoxville, TN, USA, 2020. 43. He, D.; Wu, F.; Ma, W.; Zhang, Y.; Gu, J.-D.; Duan, Y.; Xu, R.; Feng, H.; Wang, W.; Li, S.-W. Insights into the bacterial and fungal communities and microbiome that causes a microbe outbreak on ancient wall paintings in the Maijishan Grottoes. Int. Biodeter. Biodegr. 2021, 163, 105250. [CrossRef] 44. Ma, L.; Huang, X.; Wang, H.; Yun, Y.; Cheng, X.; Liu, D.; Lu, X.; Qiu, X. Microbial interactions drive distinct taxonomic and potential metabolic responses to habitats in karst cave ecosystem. Microbiol. Spect. 2021, 9, e01152-21. [CrossRef] 45. Zada, S.; Xie, J.; Yang, M.; Yang, X.; Sajjad, W.; Rafiq, M.; Hasan, F.; Hu, Z.; Wang, H. Composition and functional profiles of microbial communities in two geochemically and mineralogically different caves. Appl. Microbiol. Biotechnol. 2021, 105, 8921–8936. [CrossRef] 46. Ai, J.; Guo, J.; Li, Y.; Zhong, X.; Lv, Y.; Li, J.; Yang, A. The diversity of microbes and prediction of their functions in karst caves under the influence of human tourism activities—A case study of Zhijin Cave in Southwest China. Environ. Sci. Pollut. Res. 2022, 29, 25858–25868. [CrossRef] 47. Buresova-Faitova, A.; Kopecky, J.; Sagova-Mareckova, M.; Alonso, L.; Vautrin, F.; Moënne-Loccoz, Y.; Rodriguez-Nava, V. Comparison of Actinobacteria communities from human-impacted and pristine karst caves. MicrobiologyOpen 2022, 11, e1276. [CrossRef] 48. Djebaili, R.; Mignini, A.; Vaccarelli, I.; Pellegrini, M.; Spera, D.M.; Del Gallo, M.; D’Alessandro, A.M. Polyhydroxybutyrate- producing cyanobacteria from lampenflora: The case study of the “Stiffe” caves in Italy. Front. Microbiol. 2022, 13, 933398. [CrossRef] 49. Cheng, X.; Xiang, X.; Yun, Y.; Wang, W.; Wang, H.; Bodelier, P.L.E. Archaea and their interactions with bacteria in a karst ecosystem. Front. Microbiol. 2023, 14, 1068595. [CrossRef] [PubMed] 50. Dimkic, I.; Copic, M.; Petrovic, M.; Stupar, M.; Savkovic, Ž.; Kneževic, A.; Simic, G.S.; Grbic, M.L.; Unkovic, N. Bacteriobiota of the cave church of Sts. Peter and Paul in Serbia—Culturable and non-culturable communities’ assessment in the bioconservation potential of a peculiar fresco painting. Int. J. Mol. Sci. 2023, 24, 1016. [CrossRef] 51. Riquelme, C.; Rigal, F.; Hathaway, J.J.M.; Northup, D.E.; Spilde, M.N.; Borges, P.A.V.; Gabriel, R.; Amorin, I.R.; Dapkevicius, M.L.N.E. Cave microbial community composition in oceanic islands: Disentangling the effect of different colored mats in diversity patterns of Azorean lava caves. FEMS Microbiol. Ecol. 2015, 91, fiv141. [CrossRef] [PubMed] 52. Spilde, M.N.; Northup, D.E.; Caimi, N.A.; Boston, P.J.; Stone, F.D.; Smith, S. Microbial mat communities in Hawaiian lava caves. Int. Symp. Vulcanospeleol. 2016. Available online: https://www.cavepics.com/IVS17/SPILDE.pdf. (accessed on 29 October 2022). 53. Lavoie, K.H.; Winter, A.S.; Read, K.J.H.; Hughes, E.M.; Spilde, M.N.; Northup, D.E. Comparison of bacterial communities from lava cave microbial mats to overlying surface soils from Lava Beds National Monument, USA. PLoS ONE 2017, 12, e0169339. [CrossRef] [PubMed] 54. Weng, M.M.; Zaikova, E.; Millan, M.; Williams, A.J.; McAdam, A.C.; Knudson, C.A.; Fuqua, S.R.; Wagner, N.Y.; Craft, K.; Nawotniak, S.K.; et al. Life underground: Investigating microbial communities and their biomarkers in Mars-analog lava tubes at Craters of the Moon National Monument and Preserve. J. Geophys. Res. Planets 2022, 127, e2022JE007268. [CrossRef] 55. Nicolosi, G.; Gonzalez-Pimentel, J.L.; Piano, E.; Isaia, M.; Miller, A.Z. First insights into the bacterial diversity of Mount Etna volcanic caves. Microb. Ecol. 2023, 85. in press. [CrossRef] [PubMed] 56. Barton, H.A.; Taylor, N.M.; Kreate, M.P.; Springer, A.C.; Oehrle, S.A.; Bertog, J.L. The impact of host rock geochemistry on bacterial community structure in oligotrophic cave environments. Int. J. Speleol. 2007, 36, 93–104. [CrossRef] 57. Ghezzi, D.; Sauro, F.; Columbu, A.; Carbone, C.; Hong, P.-Y.; Vergara, F.; De Waele, J.; Cappelletti, M. Transition from unclassified Ktedonobacterales to Actinobacteria during amorphous silica precipitation in a quartzite cave environment. Sci. Rep. 2021, 11, 3921. [CrossRef] 58. Weber, C.F. Reduced vertical stratification of soil bacterial community structure and composition is associated with Bromus tectorum invasion of sagebrush steppe. J. Arid Environ. 2015, 115, 90–99. [CrossRef] 59. Osman, J.R.; Fernandes, G.; Regeard, C.; Jaubert, C.; DuBow, M.S. Examination of the bacterial biodiversity of coastal eroded surface soils from the Padza de Dapani (Mayotte Island). Geomicrobiol. J. 2018, 35, 355–365. [CrossRef] 60. Lambrechts, S.; Willems, A.; Tahon, G. Uncovering the uncultivated majority in Antarctic soils: Toward a synergistic approach. Front. Microbiol. 2019, 10, 242. [CrossRef] 61. Li, J.; Wu, Z.; Yuan, J. Impact of agro-farming activities on microbial diversity of acidic red soils in a Camellia Oleifera Forest. Rev. Bras. Cien. Solo 2019, 43, e0190044. [CrossRef] 62. Zhenqing, Z.; Binglin, Z.; Wei, Z.; Guangxiu, L.; Tuo, C.; Yang, L.; Jingwei, C.; Mao, T. Distribution characteristics and anti- radiation activity of culturable bacteria in black gobi ecosystem of the Hexi Corridor. J. Desert Res. 2020, 40, 52–62. 63. Bossolani, J.; Crusciol, C.A.C.; Leite, M.F.A.; Merloti, L.F.; Moretti, L.G.; Pascoaloto, I.M.; Kuramae, E.E. Modulation of the soil microbiome by long-term Ca-based soil amendments boosts soil organic carbon and physicochemical quality in a tropical no-till crop rotation system. Soil Biol. Biochem. 2021, 156, 108188. [CrossRef] Appl. Biosci. 2023, 2 206 64. Chen, B.; Jiao, S.; Luo, S.; Ma, B.; Qi, W.; Cao, C.; Zhao, Z.; Du, G.; Ma, X. High soil pH enhances the network interactions among bacterial and archaeal microbiota in alpine grasslands of the Tibetan Plateau. Environ. Microbiol. 2021, 23, 464–477. [CrossRef] 65. Liu, X.; Liu, Y.; Zhang, L.; Yin, R.; Wu, G.-L. Bacterial contributions of bio-crusts and litter crusts to nutrient cycling in the Mu Us Sandy Land. Catena 2021, 199, 105090. [CrossRef] 66. Liu, Z.; Yang, Y.; Ji, S.; Dong, D.; Li, Y.; Wang, M.; Han, L.; Chen, X. Effects of elevation and distance from highway on the abundance and community structure of bacteria in soil along Qinghai-Tibet highway. Int. J. Environ. Res. Public Health 2021, 18, 13137. [CrossRef] 67. Schulze-Makuch, D.; Lipus, D.; Arens, F.L.; Baqué, M.; Bornemann, T.L.V.; de Vera, J.-P.; Flury, M.; Frösler, J.; Heinz, J.; Hwang, Y.; et al. Microbial hotspots in lithic microhabitats inferred from DNA fractionation and metagenomics in the Atacama Desert. Microorganisms 2021, 9, 1038. [CrossRef] 68. Xie, J.; Wu, Z.; Zhang, X.; Peng, T.; Yang, C.; Zhang, J.; Liang, J. Diversity and structural characteristics of soil microbial communities in different habitats of wild Lilium regale Wilson in Wenchuan area. Bioengineered 2021, 12, 10457–10469. [CrossRef] [PubMed] 69. Benaud, N.; Chelliah, D.S.; Wong, S.Y.; Ferrari, B.C. Soil substrate culturing approaches recover diverse members of Actinomycetota from desert soils of Herring Island, East Antarctica. Extremophiles 2022, 26, 24. [CrossRef] [PubMed] 70. Guerra, V.A.; Beule, L.; Mackowiak, C.L.; Dubeux, J.C.B., Jr.; Blount, A.R.S.; Wang, X.-B.; Rowland, D.L.; Liao, H.-L. Soil bacterial community response to rhizoma peanut incorporation into Florida pastures. J. Environ. Qual. 2022, 51, 55–65. [CrossRef] [PubMed] 71. Ke, M.; Xu, N.; Zhang, Z.; Qiu, D.; Kang, J.; Lu, T.; Wang, T.; Peijnenburg, W.J.G.M.; Sun, L.; Hu, B.; et al. Development of a machine-learning model to identify the impacts of pesticides characteristics on soil microbial communities from high-throughput sequencing data. Environ. Microbiol. 2022, 24, 5561–5573. [CrossRef] 72. Sun, H.; Zhang, H. Alien species invasion of deep-sea bacteria into terrestrial soil. J. Clean. Product. 2022, 371, 133662. [CrossRef] 73. Sun, H.; Peng, Q.; Guo, J.; Zhang, H.; Bai, J.; Mao, H. Effects of short-term soil exposure of different doses of ZnO nanoparticles on the soil environment and the growth and nitrogen fixation of alfalfa. Environ. Pollut. 2022, 309, 119817. [CrossRef] 74. Topalovic, O.; Santos, S.S.; Heuer, H.; Nesme, J.; Kanfra, X.; Hallmann, J.; Sørensen, S.J.; Vestergård, M. Deciphering bacteria associated with a pre-parasitic stage of the root-knot nematode Meloidogyne hapla in nemato-suppressive and nemato-conducive soils. Appl. Soil Ecol. 2022, 172, 104344. [CrossRef] 75. Wang, L.; Peng, C.; Gong, B.; Yang, Z.; Song, J.; Li, L.; Xu, L.; Yue, T.; Wang, X.; Yang, M.; et al. Actinobacteria community and their antibacterial and cytotoxic activity on the Weizhou and Xieyang volcanic islands in the Beibu Gulf of China. Front. Microbiol. 2022, 13, 911408. [CrossRef] 76. Feng, Z.; Sun, H.; Qin, Y.; Zhou, Y.; Zhu, H.; Yao, Q. A synthetic community of siderophore-producing bacteria increases soil selenium bioavailability and plant uptake through regulation of the soil microbiome. Sci. Total Environ. 2023, 871, 162076. [CrossRef] 77. Conte, A. Phylogenetic Diversity and Metabolic Potential of Prokaryotic Communities in Permafrost and Brine Pockets of Perennially Frozen Antarctic Lakes (Northern Victoria Land). Ph.D. Thesis, Università Degli Studi di Messina, Messina, Italy, 2017. 78. Perez-Mon, C.; Stierli, B.; Plötze, M.; Frey, B. Fast and persistent responses of alpine permafrost microbial communities to in situ warming. Sci. Total Environ. 2022, 807, 150720. [CrossRef] 79. Narendrula, R. Biochemical and Molecular Characterization of Microbial Communities from a Metal Contaminated and Reclaimed Region. Ph.D. Thesis, Laurentian University, Sudbury, ON, Canada, 2017. 80. Lin, J.; He, F.; Su, B.; Sun, M.; Owens, G.; Chen, Z. The stabilizing mechanism of cadmium in contaminated soil using green synthesized iron oxide nanoparticles under long-term incubation. J. Hazard. Mater. 2019, 379, 120832. [CrossRef] 81. Dong, S.; Liu, S.; Cui, S.; Zhou, X.; Gao, Q. Responses of soil properties and bacterial community to the application of sulfur fertilizers in black and sandy soils. Pol. J. Environ. Stud. 2022, 31, 35–47. [CrossRef] [PubMed] 82. Pu, C.; Liu, H.; Ding, G.; Sun, Y.; Yu, X.; Chen, J.; Ren, J.; Gong, X. Impact of direct application of biogas slurry and residue in fields: In situ analysis of antibiotic resistance genes from pig manure to fields. J. Hazard. Mater. 2018, 344, 441–449. [CrossRef] [PubMed] 83. Deng, J.; Zhang, Y.; Yin, Y.; Zhu, X.; Zhu, W.; Zhou, Y. Comparison of soil bacterial community and functional characteristics following afforestation in the semi-arid areas. PeerJ 2019, 7, e7141. [CrossRef] 84. Deng, J.; Zhou, Y.; Zhu, W.; Yin, Y. Effects of afforestation with Pinus sylvestris var. mongolica plantations combined with enclosure management on soil microbial community. PeerJ 2020, 8, e8857. [PubMed] 85. Liu, K.; Ding, X.; Wang, J. Soil metabolome correlates with bacterial diversity and co-occurrence patterns in root-associated soils on the Tibetan Plateau. Sci. Total Environ. 2020, 735, 139572. [CrossRef] 86. Jiang, H.; Chen, Y.; Hu, Y.; Wang, Z.; Lu, X. Soil bacterial communities and diversity in alpine grasslands on the Tibetan Plateau based on 16S rRNA gene sequencing. Front. Ecol. Evol. 2021, 9, 630722. [CrossRef] 87. Solon, A.J.; Mastrangelo, C.; Vimercati, L.; Sommers, P.; Darcy, J.L.; Gendron, E.M.S.; Porazinska, D.L.; Schmidt, S.K. Gullies and moraines are islands of biodiversity in an arid, mountain landscape, Asgard Range, Antarctica. Front. Microbiol. 2021, 12, 654135. [CrossRef] Appl. Biosci. 2023, 2 207 88. Rodríguez-Berbel, N.; Ortega, R.; Lucas-Borja, M.E.; Solé-Benet, A.; Miralles, I. Long-term effects of two organic amendments on bacterial communities of calcareous mediterranean soils degraded by mining. J. Environ. Manag. 2020, 271, 110920. [CrossRef] 89. Chuvochina, M.S.; Alekhina, I.A.; Normand, P.; Petit, J.-R.; Bulat, S.A. Three events of Saharan dust deposition on the Mont Blanc glacier associated with different snow-colonizing bacterial phylotypes. Microbiology 2011, 80, 125–131. [CrossRef] 90. Hui, N.; Sun, N.; Du, H.; Umair, M.; Kang, H.; Liu, X.; Romantschuk, M.; Liu, C. Karst rocky desertification does not erode ectomycorrhizal fungal species richness but alters microbial community structure. Plant Soil 2019, 445, 383–396. [CrossRef] 91. Reverdy, A.; Hathaway, D.; Jha, J.; Michaels, G.; Sullivan, J.; Diaz Mac-Adoo, D.; Riquelme, C.; Chai, Y.; Godoy, V.G. Insights into the diversity and survival strategies of soil bacterial isolates from the Atacama Desert. bioRxiv 2020. [CrossRef] 92. Biderre-Petit, C.; Hochart, C.; Gardon, H.; Dugat-Bony, E.; Terrat, S.; Jouan-Dufournel, I.; Paris, R. Analysis of bacterial and archaeal communities associated with Fogo volcanic soils of different ages. FEMS Microbiol. Ecol. 2020, 96, fiaa104. [CrossRef] [PubMed] 93. Zhang, X.; Du, W.; Xu, Y.; Wang, Y.L. Soil bacterial diversity and function in semi-arid forest parks in Baotou City. Biodivers. Sci. 2022, 30, 22245. [CrossRef] 94. Li, Y.; Gao, W.; Wang, C.; Gao, M. Distinct distribution patterns and functional potentials of rare and abundant microorganisms between plastisphere and soils. Sci. Total Environ. 2023, 873, 162413. [CrossRef] 95. Zhang, S.; Pei, L.; Zhao, Y.; Shan, J.; Zheng, X.; Xu, G.; Sun, Y.; Wang, F. Effects of microplastics and nitrogen deposition on soil multifunctionality, particularly C and N cycling. J. Hazard. Mater. 2023, 451, 131152. [CrossRef] 96. Lin, Y.; Yang, L.; Chen, Z.; Gao, Y.; Kong, J.; He, Q.; Su, Y.; Li, J.; Qiu, Q. Seasonal variations of soil bacterial and fungal communities in a subtropical Eucalyptus plantation and their responses to throughfall reduction. Front. Microbiol. 2023, 14, 1113616. [CrossRef] 97. De Tender, C.; Haegeman, A.; Vandecasteele, B.; Clement, L.; Cremelie, P.; Dawyndt, P.; Maes, M.; Debode, J. Dynamics in the strawberry rhizosphere microbiome in response to biochar and Botrytis cinerea leaf infection. Front. Microbiol. 2016, 7, 2062. [CrossRef] 98. Echeverría Molinar, A. Efecto de Factores Abióticos y Bióticos Sobre la Estructura de la Comunidad Microbiana del Suelo en un Ambiente Oligotrófico. Master ’s Thesis, Instituto Potosino de Investigación Científica y Tecnológica, San Luis Potosí, México, 2017. 99. Visioli, G.; Sanangelantoni, A.M.; Vamerali, T.; Dal Cortivo, C.; Blandino, M. 16S rDNA profiling to reveal the influence of seed-applied biostimulants on the rhizosphere of young maize plants. Molecules 2018, 23, 1461. [CrossRef] 100. Gao, X.; Wu, Z.; Liu, R.; Wu, J.; Zeng, Q.; Qi, Y. Rhizosphere bacterial community characteristics over different years of sugarcane ratooning in consecutive monoculture. BioMed Res. Int. 2019, 2019, 4943150. [CrossRef] 101. Chen, Y.; Tian, W.; Shao, Y.; Li, Y.-J.; Lin, L.-A.; Zhang, Y.-J.; Han, H.; Chen, Z.-J. Miscanthus cultivation shapes rhizosphere microbial community structure and function as assessed by Illumina MiSeq sequencing combined with PICRUSt and FUNGUIld analyses. Arch. Microbiol. 2020, 202, 1157–1171. [CrossRef] [PubMed] 102. López-Lozano, N.E.; Echeverría Molinar, A.; Ortiz Durán, E.A.; Hernández Rosales, M.; Souza, V. Bacterial diversity and interaction networks of Agave lechuguilla rhizosphere differ significantly from bulk soil in the oligotrophic basin of Cuatro Cienegas. Front. Plant Sci. 2020, 11, 1028. [CrossRef] [PubMed] 103. Monteiro, L.C.P. Comunidades Microbianas Rizosféricas de Plantas em Coexistência Sob Diferentes Condições Edáficas. Ph.D. Thesis, Universidade Federal de Viçosa, Viçosa, Brasil, 2020. 104. Bettermann, A.; Zethof, J.H.T.; Babin, D.; Cammeraat, L.H.; Solé-Benet, A.; Lázaro, R.; Luna, L.; Nesme, J.; Sorensen, S.J.; Kalbitz, K.; et al. Importance of microbial communities at the root-soil interface for extracellular polymeric substances and soil aggregation in semiarid grasslands. Soil Biol. Biochem. 2021, 159, 108301. [CrossRef] 105. Deng, Q.; Zhang, T.; Xie, D.; Yang, Y. Rhizosphere microbial communities are significantly affected by optimized phosphorus management in a slope farming system. Front. Microbiol. 2021, 12, 739844. [CrossRef] 106. Engelbrecht, G.; Claassens, S.; Mienie, C.M.S.; Fourie, H. Screening of rhizosphere bacteria and nematode populations associated with soybean roots in the Mpumalanga Highveld of South Africa. Microorganisms 2021, 9, 1813. [CrossRef] 107. Li, C.; Chen, G.; Zhang, J.; Zhu, P.; Bai, X.; Hou, Y.; Zhang, X. The comprehensive changes in soil properties are continuous cropping obstacles associated with American ginseng (Panax quinquefolius) cultivation. Sci. Rep. 2021, 11, 5068. [CrossRef] 108. Ye, F.; Wang, X.; Wang, Y.; Wu, S.; Wu, J.; Hong, Y. Different pioneer plant species have similar rhizosphere microbial communities. Plant Soil 2021, 464, 165–181. [CrossRef] 109. Zuo, J.; Zu, M.; Liu, L.; Song, X.; Yuan, Y. Composition and diversity of bacterial communities in the rhizosphere of the Chinese medicinal herb Dendrobium. BMC Plant Biol. 2021, 21, 127. [CrossRef] 110. Gu, Y.-Y.; Zhang, H.-Y.; Liang, X.-Y.; Fu, R.; Li, M.; Chen, C.-J. Impact of biochar and bioorganic fertilizer on rhizosphere bacteria in saline–alkali soil. Microorganisms 2022, 10, 2310. [CrossRef] 111. He, C.; Wang, R.; Ding, W.; Li, Y. Effects of cultivation soils and ages on microbiome in the rhizosphere soil of Panax ginseng. Appl. Soil Ecol. 2022, 174, 104397. [CrossRef] 112. Jara-Servin, A.; Silva, A.; Barajas, H.; Cruz-Ortega, R.; Tinoco-Ojanguren, C.; Alcaraz, L.D. The Allelopathic Buffelgrass and Its Rhizosphere Microbiome. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4263505 (accessed on 28 February 2023). 113. Kushwaha, P.; Neilson, J.W.; Maier, R.M.; Babst-Kostecka, A. Soil microbial community and abiotic soil properties influence Zn and Cd hyperaccumulation differently in Arabidopsis halleri. Sci. Total Environ. 2022, 803, 150006. [CrossRef] [PubMed] Appl. Biosci. 2023, 2 208 114. Lin, Y.; Zhang, Y.; Liang, X.; Duan, R.; Yang, L.; Du, Y.; Wu, L.; Huang, J.; Xiang, G.; Bai, J.; et al. Assessment of rhizosphere bacterial diversity and composition in a metal hyperaccumulator (Boehmeria nivea) and a nonaccumulator (Artemisia annua) in an antimony mine. J. Appl. Microbiol. 2022, 132, 3432–3443. [CrossRef] [PubMed] 115. Lizano-Bastardín, A.L.; Villadas, P.J.; Pulido-Suárez, L.; Fernández-López, M.; León-Barrios, M. The Rhizosphere Microbiome Associated with the Legume Spartocytisus supranubius in the High Mountain Ecosystem of Teide N.P. First Spanish-Portuguese Congress on Beneficial Plant-Microbe Interactions, Poster S1-P-03. Available online: https://events.iniav.pt/bemiplant/images/ book-abstracts_15-10-2022.pdf (accessed on 9 February 2023). 116. Ren, H.; Islam, M.S.; Wang, H.; Guo, H.; Wang, Z.; Qi, X.; Zhang, S.; Guo, J.; Wang, Q.; Li, B. Effect of humic acid on soil physical and chemical properties, microbial community structure, and metabolites of decline diseased bayberry. Int. J. Mol. Sci. 2022, 23, 14707. [CrossRef] [PubMed] 117. Taniguchi, T.; Isobe, K.; Imada, S.; Eltayeb, M.; Akaji, Y.; Nakayama, M.; Allen, M.F.; Aronson, E. Root endophytic bacterial and fungal communities in a natural hot desert are differentially regulated in dry and wet seasons by stochastic processes and functional traits. Available online: https://ssrn.com/abstract=4363629 (accessed on 25 February 2023). 118. Zhou, Y.; Pang, Z.; Jia, H.; Yuan, Z.; Ming, R. Responses of roots and rhizosphere of female papaya to the exogenous application of GA . BMC Plant Biol. 2023, 23, 35. [CrossRef] [PubMed] 119. Obieze, C.C.; George, P.B.L.; Boyle, B.; Khasa, D.P. Black pepper rhizomicrobiome: Spectrum of plant health indicators, critical environmental factors and community compartmentation in Vietnam. Appl. Soil Ecol. 2023, 187, 104857. [CrossRef] 120. Deng, J.; Yin, Y.; Zhu, W.; Zhou, Y. Response of soil environment factors and microbial communities to phytoremediation with Robinia pseudoacacia in an open-cut magnesite mine. Land Degrad. Dev. 2020, 31, 2340–2355. [CrossRef] 121. Ezeokoli, O.T.; Bezuidenhout, C.C.; Maboeta, M.S.; Khasa, D.P.; Adeleke, R.A. Structural and functional differentiation of bacterial communities in post-coal mining reclamation soils of South Africa: Bioindicators of soil ecosystem restoration. Sci. Rep. 2020, 10, 1759. [CrossRef] 122. Thompson, E.; Erickson, M.; Malik, N.; Mettler, R.; Reman, B.; Ren, Y.; Bergmann, D. Culture-independent characterization of “cave silver” biofilms from the 1470 m level of the Sanford Underground Research Facility, Lead, SD. Proc. South Dak. Acad. Sci. 2020, 99, 29–55. 123. Arif, S.; Nacke, H.; Schliekmann, E.; Reimer, A.; Arp, G.; Hoppert, M. Composition and niche-specific characteristics of microbial consortia colonizing Marsberg copper mine in the Rhenish Massif. Biogeosciences 2021, 19, 4883–4902. [CrossRef] 124. Shi, A.; Hu, Y.; Zhang, X.; Zhou, D.; Xu, J.; Rensing, C.; Zhang, L.; Xing, S.; Ni, W.; Yang, W. Biochar loaded with bacteria enhanced Cd/Zn phytoextraction by facilitating plant growth and shaping rhizospheric microbial community. Environ. Pollut. 2023, 327, 121559. [CrossRef] 125. Diaz-Herraiz, M.; Jurado, V.; Cuezva, S.; Laiz, L.; Pallecchi, P.; Tiano, P.; Sanchez-Moral, S.; Saiz-Jimenez, C. Deterioration of an Etruscan tomb by bacteria from the order Rhizobiales. Sci. Rep. 2014, 4, 3610. [CrossRef] [PubMed] 126. Zacharenka, F. Study of the Bacterial Diversity on Ancient Mural Paintings from Kalliroi’s Fountain and Pana’s Sanctuary. Master ’s Thesis, University of Thessaly, Volos, Greece, 2014. 127. Duan, Y.; Wu, F.; Wang, W.; He, D.; Gu, J.-D.; Feng, H.; Chen, T.; Liu, G.; An, L. The microbial community characteristics of ancient painted sculptures in Maijishan Grottoes, China. PLoS ONE 2017, 12, e0179718. 128. Li, Q.; Zhang, B.; Wang, L.; Ge, Q. Distribution and diversity of bacteria and fungi colonizing ancient Buddhist statues analyzed by high-throughput sequencing. Int. Biodeter. Biodegr. 2017, 117, 245–254. [CrossRef] 129. Li, Q.; Zhang, B.; Yang, X.; Ge, Q. Deterioration-associated microbiome of stone monuments: Structure, variation, and assembly. Appl. Environ. Microbiol. 2018, 84, e02680-17. [CrossRef] [PubMed] 130. Zhang, X.; Ge, Q.; Zhu, Z.; Deng, Y.; Gu, J.-D. Microbiological community of the Royal Palace in Angkor Thom and Beng Mealea of Cambodia by Illumina sequencing based on 16S rRNA gene. Int. Biodeter. Biodegr. 2018, 134, 127–135. [CrossRef] 131. Dyda, M.; Pyzik, A.; Wilkojc, E.; Kwiatkowska-Kopka, B.; Sklodowska, A. Bacterial and fungal diversity inside the medieval building constructed with sandstone plates and lime mortar as an example of the microbial colonization of a nutrient-limited extreme environment (Wawel Royal Castle, Krakow, Poland). Microorganisms 2019, 7, 416. [CrossRef] 132. Jroundi, F.; Elert, K.; Ruiz-Agudo, E.; Gonzalez-Muñoz, M.T.; Rodriguez-Navarro, C. Bacterial diversity evolution in Maya plaster and stone following a bio-conservation treatment. Front. Microbiol. 2020, 11, 599144. [CrossRef] 133. Louati, M.; Ennis, N.J.; Ghodhbane-Gtari, F.; Hezbri, K.; Sevigny, J.L.; Fahnestock, M.F.; Cherif-Silini, H.; Bryce, J.G.; Tisa, L.S.; Gtari, M. Elucidating the ecological networks in stone-dwelling microbiomes. Environ. Microbiol. 2020, 22, 1467–1480. [CrossRef] 134. Schröer, L.; De Kock, T.; Cnudde, V.; Boon, N. Differential colonization of microbial communities inhabiting Lede stone in the urban and rural environment. Sci. Total Environ. 2020, 733, 139339. [CrossRef] 135. Yang, S.; Wu, L.; Wu, B.; Zhang, Y.; Wang, H.; Tan, X. Diversity and structure of soil microbiota of the Jinsha earthen relic. PLoS ONE 2020, 15, e0236165. [CrossRef] 136. Coelho, C.; Mesquita, N.; Costa, I.; Soares, F.; Trovão, J.; Freitas, H.; Portugal, A.; Tiago, I. Bacterial and archaeal structural diversity in several biodeterioration patterns on the limestone walls of the Old Cathedral of Coimbra. Microorganisms 2021, 9, 709. [CrossRef] [PubMed] 137. Ipekci, E. Evaluation of Stone Deterioration Problems of Anavarza Archaeological Site for the Purpose of Conservation. Ph.D. Thesis, Izmir Institute of Technology, Urla, Turkey, 2021. Appl. Biosci. 2023, 2 209 138. Sansupa, C.; Suphaphimol, N.; Nonthijun, P.; Ronsuek, T.; Yimklan, S.; Semakul, N.; Khrueraya, T.; Suwannarach, N.; Purahong, W.; Disayathanoowat, T. The microbiome of a 13th century Lan Na mural painting: Diversity, taxonomic distribution and their biodeterioration potentials. Microorganisms 2023, 11. in press. 139. Chen, P.; Zhang, L.; Guo, X.; Dai, X.; Liu, L.; Xi, L.; Wang, J.; Song, L.; Wang, Y.; Zhu, Y.; et al. Diversity, biogeography, and biodegradation potential of actinobacteria in the deep-sea sediments along the Southwest Indian Ridge. Front. Microbiol. 2016, 7, 1340. [CrossRef] [PubMed] 140. Pietrzak, K.; Otlewska, A.; Dybka, K.; Danielewicz, D.; Pangallo, D.; Demnerová, K.; Durovic, ˇ M.; Kraková, L.; Scholtz, V.; Buckov ˇ á, M.; et al. A modern approach to biodeterioration assessment and disinfection of historical book. In A Modern Approach to Biodeterioration Assessment and the Disinfection of Historical Book Collections; Gutarowska, B., Ed.; Institute of Fermentation Technology and Microbiology, Łódz ´ University of Technology: Łódz, ´ Poland, 2016; pp. 81–125. 141. Gozari, M.; Bahador, N.; Jassbi, A.R.; Mortazavi, M.S.; Hamzehei, S.; Eftekhar, E. Isolation, distribution and evaluation of cytotoxic and antioxidant activity of cultivable actinobacteria from the Oman Sea sediments. Acta Oceanol. Sin. 2019, 38, 84–90. [CrossRef] 142. Van Assche, A. Characterization of the Bacterial Community Composition in Drinking Water Production and Distribution Systems, Emphasizing Acinetobacter species. Ph.D. Thesis, University of Leuven, Leuven, Belgium, 2019. 143. Argudo Fernández, M. Microbial Communities Responses in Fluvial Biofilms under Metal Stressed Scenarios. Ph.D. Thesis, Universitat de Girona, Girona, Spain, 2020. 144. Cao, W.; Xiong, Y.; Zhao, D.; Tan, H.; Qu, J. Bryophytes and the symbiotic microorganisms, the pioneers of vegetation restoration in karst rocky desertification areas in southwestern China. Appl. Microbiol. Biotechnol. 2020, 104, 873–891. [CrossRef] [PubMed] 145. Caffrey, P.; Hogan, M.; Song, Y. New glycosylated polyene macrolides: Refining the ore from genome mining. Antibiotics 2022, 11, 334. [CrossRef] 146. Yang, Y.; Qiu, J.; Wang, X. Exploring the dynamic of bacterial communities in Manila clam (Ruditapes philippinarum) during refrigerated storage. Front. Microbiol. 2022, 13, 882629. [CrossRef] 147. Boquet, E.; Boronat, A.; Ramos-Cormenzana, A. Production of calcite (calcium carbonate) crystals by soil bacteria is a general phenomenon. Nature 1973, 246, 527–528. [CrossRef] 148. Barton, H.A.; Northup, D.E. Geomicrobiology in cave environments: Past, current and future perspectives. J. Cave Karst Stud. 2007, 69, 163–178. 149. Banks, E.D.; Taylor, N.M.; Gulley, J.; Lubbers, B.R.; Giarrizzo, J.G.; Bullen, H.A.; Hoehler, T.M.; Barton, H.A. Bacterial calcium carbonate precipitation in cave environments: A function of calcium homeostasis. Geomicrobiol. J. 2010, 27, 444–454. [CrossRef] 150. Cañaveras, J.C.; Hoyos, M.; Sanchez-Moral, S.; Sanz-Rubio, E.; Bedoya, J.; Soler, V.; Groth, I.; Schumann, P.; Laiz, L.; Gonzalez, I.; et al. Microbial communities associated to hydromagnesite and needle fiber aragonite deposits in a karstic cave (Altamira, Northern Spain). Geomicrobiol. J. 1999, 16, 9–25. 151. Sanchez-Moral, S.; Cañaveras, J.C.; Laiz, L.; Saiz-Jimenez, C.; Bedoya, J.; Luque, L. Biomediated precipitation of calcium carbonate metastable phases in hypogean environments: A short review. Geomicrobiol. J. 2003, 20, 491–500. [CrossRef] 152. Cuezva, S.; Fernandez-Cortes, A.; Porca, E.; Pasic, L.; Jurado, V.; Hernandez-Marine, M.; Serrano-Ortiz, P.; Cañaveras, J.C.; Sanchez-Moral, S.; Saiz-Jimenez, C. The biogeochemical role of Actinobacteria in Altamira Cave, Spain. FEMS Microbiol. Ecol. 2012, 81, 281–290. [CrossRef] [PubMed] 153. Maciejewska, M.; Adam, D.; Naômé, A.; Martinet, L.; Tenconi, E.; Calusinska, M.; Delfosse, P.; Hanikenne, M.; Baurain, D.; Compère, P.; et al. Assessment of the potential role of Streptomyces in cave moonmilk formation. Front. Microbiol. 2017, 8, 1181. [CrossRef] [PubMed] 154. Hoffmann, T.D.; Reeksting, B.J.; Gebhard, S. Bacteria-induced mineral precipitation: A mechanistic review. Microbiology 2021, 167, 001049. [CrossRef] 155. Tomé, D. Yeast extracts: Nutritional and flavoring food ingredients. ACS Food Sci. Technol. 2021, 1, 487–494. [CrossRef] 156. Joubert, J.J.; van Rensburg, E.J.; Pitout, M.J. A plate method for demonstrating the breakdown of heparin and chrondoitin sulphate by bacteria. J. Microbiol. Methods 1984, 2, 197–202. [CrossRef] 157. Sanchez-Moral, S.; Luque, L.; Cañaveras, J.C.; Laiz, L.; Jurado, V.; Saiz-Jimenez, C. Bioinduced barium precipitation in St. Callixtus and Domitilla catacombs. Ann. Microbiol. 2004, 54, 1–12. 158. Sanchez-Moral, S.; Bedoya, J.; Luque, L.; Cañaveras, J.C.; Jurado, V.; Laiz, L.; Saiz-Jimenez, C. Biomineralization of different crystalline phases by bacteria isolated from catacombs. In Molecular Biology and Cultural Heritage; Saiz-Jimenez, C., Ed.; Balkema: Lisse, The Netherlands, 2003; pp. 179–185. 159. Rivadeneyra, M.A.; Ramos-Cormenzana, A.; García-Cervigón, A. Bacterial formation of struvite. Geomicrobiol. J. 1983, 3, 151–163. [CrossRef] 160. Rivadeneyra, M.A.; Pérez-García, I.; Ramos-Cormenzana, A. Influence of ammonium ion on bacterial struvite production. Geomicrobiol. J. 1992, 10, 125–137. [CrossRef] 161. Manzoor, M.A.P.; Singh, B.; Agrawal, A.K.; Arun, A.B.; Mujeeburahiman, M.; Rekha, P.-D. Morphological and micro-tomographic study on evolution of struvite in synthetic urine infected with bacteria and investigation of its pathological biomineralization. PLoS ONE 2018, 13, e0202306. [CrossRef] [PubMed] 162. Sánchez-Román, M.; Rivadeneyra, M.A.; Vasconcelos, C.; McKenzie, J.A. Biomineralization of carbonate and phosphate by moderately halophilic bacteria. FEMS Microbiol. Ecol. 2007, 61, 273–284. [CrossRef] Appl. Biosci. 2023, 2 210 163. Cañaveras, J.C.; Cuezva, S.; Sanchez-Moral, S.; Lario, J.; Laiz, L.; Gonzalez, J.M.; Saiz-Jimenez, C. On the origin of fiber calcite crystals in moonmilk deposits. Naturwissenschaften 2006, 93, 27–32. [CrossRef] [PubMed] 164. Onac, B.P.; Ghergari, L. Moonmilk mineralogy in some Romanian and Norwegian Caves. Cave Sci. 1993, 20, 106–120. 165. Cañaveras, J.C.; Sanchez–Moral, S.; Soler, V.; Saiz-Jimenez, C. Microorganisms and microbially induced fabrics in cave walls. Geomicrobiol. J. 2001, 18, 223–240. 166. Baskar, S.; Baskar, R.; Routh, J. Biogenic evidences of moonmilk deposition in the Mawmluh Cave, Meghalaya, India. Geomicrobiol. J. 2011, 28, 252–265. 167. Jones, B.; Peng, X. Abiogenic growth of needle-fiber calcite in spring towers at Shiqiang, Yunnan province, China. J. Sediment. Res. 2014, 84, 1021–1040. [CrossRef] 168. Cuezva, S.; Sanchez-Moral, S.; Saiz-Jimenez, C.; Cañaveras, J.C. Microbial communities and associated mineral fabrics in Altamira Cave, Spain. Int. J. Speleol. 2009, 38, 83–92. 169. Sanchez-Moral, S.; Portillo, M.C.; Janices, I.; Cuezva, S.; Fernández-Cortés, A.; Cañaveras, J.C.; Gonzalez, J.M. The role of microor- ganisms in the formation of calcitic moonmilk deposits and speleothems in Altamira Cave. Geomorphology 2012, 139–140, 285–292. [CrossRef] 170. Maciejewska, M.; Calusinska, M.; Cornet, L.; Adam, D.; Pessi, I.S.; Malchair, S.; Delfosse, P.; Baurain, D.; Barton, H.; Carnol, M.; et al. High-throughput sequencing analysis of the actinobacterial spatial diversity in moonmilk deposits. Antibiotics 2018, 7, 27. [CrossRef] 171. Groth, I.; Schumann, P.; Laiz, L.; Sanchez–Moral, S.; Cañaveras, J.C.; Saiz-Jimenez, C. Geomicrobiological study of the Grotta dei Cervi, Porto Badisco, Italy. Geomicrobiol. J. 2001, 18, 241–258. [CrossRef] 172. Park, S.; Cho, Y.-J.; Jung, D.; Jo, K.; Lee, E.-J.; Lee, J.-S. Microbial diversity in moonmilk of Baeg-nyong Cave, Korean CZO. Front. Microbiol. 2020, 11, 613. [CrossRef] [PubMed] 173. Cirigliano, A.; Tomassetti, M.C.; Di Pietro, M.; Mura, F.; Maneschi, M.L.; Gentili, M.D.; Cardazzo, B.; Arrighi, C.; Mazzoni, C.; Negri, R.; et al. Calcite moonmilk of microbial origin in the Etruscan Tomba degli Scudi in Tarquinia, Italy. Sci. Rep. 2018, 8, 15839. [CrossRef] [PubMed] 174. Maciejewska, M.; Pessi, I.S.; Arguelles-Arias, A.; Noirfalise, P.; Luis, G.; Ongena, M.; Barton, H.; Carnol, M.; Rigali, S. Streptomyces lunaelactis sp. nov., a novel ferroverdin A-producing Streptomyces species isolated from a moonmilk speleothem. Anton. Leeuw. 2015, 107, 519–531. [CrossRef] [PubMed] 175. Svec, P.; Kosina, M.; Zeman, M.; Holochová, P.; Králová, S.; Nemcová, E.; Micenková, L.; Urvashi, M.; Gupta, V.; Sood, U.; et al. Pseudomonas karstica sp. nov. and Pseudomonas spelaei sp. nov., isolated from calcite moonmilk deposits from caves. Int. J. Syst. Evol. Microbiol. 2020, 70, 5131–5140. [CrossRef] 176. Adam, D.; Maciejewska, M.; Naômé, A.; Martinet, L.; Coppieters, W.; Karim, L.; Baurain, D.; Rigali, S. Isolation, Characterization, and antibacterial activity of hard-to-culture Actinobacteria from cave moonmilk deposits. Antibiotics 2018, 7, 28. [CrossRef] 177. Jaroszewicz, W.; Bielanska, P.; Lubomska, D.; Kosznik-Kwasnicka, K.; Golec, P.; Grabowski, Ł.; Wieczerzak, E.; Drózdz, W.; Gaffke, L.; Pierzynowska, K.; et al. Antibacterial, antifungal and anticancer activities of compounds produced by newly isolated Streptomyces strains from the Szczelina Chochołowska Cave (Tatra Mountains, Poland). Antibiotics 2021, 10, 1212. [CrossRef] 178. Jaroszewicz, W.; Bielanska, P.; Lubomska, D.; Kosznik-Kwasnicka, K.; Golec, P.; Grabowski, Ł.; Wieczerzak, E.; Drózdz, W.; Gaffke, L.; Pierzynowska, K.; et al. Antimicrobial activities of compounds produced by newly isolated Streptomyces strains from Mountain Caves. Med. Sci. Forum 2022, 12, 7. 179. Maciejewska, M.; Adam, D.; Martinet, L.; Naômé, A.; Całusinska, ´ M.; Delfosse, P.; Carnol, M.; Barton, H.A.; Hayette, M.-P.; Smargiasso, N.; et al. A Phenotypic and genotypic analysis of the antimicrobial potential of cultivable Streptomyces isolated from cave moonmilk deposits. Front. Microbiol. 2016, 7, 1455. [CrossRef] 180. Martinet, L.; Naômé, A.; Rezende, L.C.D.; Tellatin, D.; Pignon, B.; Docquier, J.-D.; Sannio, F.; Baiwir, D.; Mazzucchelli, G.; Frédérich, M.; et al. Lunaemycins, new cyclic hexapeptide antibiotics from the cave moonmilk-dweller Streptomyces lunaelactis MM109T. Int. J. Mol. Sci. 2023, 24, 1114. [CrossRef] 181. Martinet, L.; Naômé, A.; Baiwir, D.; De Pauw, E.; Mazzucchelli, G.; Rigali, S. On the risks of phylogeny-based strain prioritization for drug discovery: Streptomyces lunaelactis as a case study. Biomolecules 2020, 10, 1027. [CrossRef] [PubMed] Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.
Applied Biosciences – Multidisciplinary Digital Publishing Institute
Published: May 6, 2023
Keywords: Crossiella; biofilms; caves; moonmilk; biomineralization; rhizosphere; soils; bioactive compounds
You can share this free article with as many people as you like with the url below! We hope you enjoy this feature!
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.