Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

SimuBP: A Simulator of Population Dynamics and Mutations Based on Branching Processes

SimuBP: A Simulator of Population Dynamics and Mutations Based on Branching Processes Originating from the Luria–Delbrück experiment in 1943, fluctuation analysis (FA) has been well developed to demonstrate random mutagenesis in microbial cell populations and infer mutation rates. Despite the remarkable progress in its theory and applications, FA often faces difficulties in the computation perspective, due to the lack of appropriate simulators. Existing simulation algorithms are usually designed specifically for particular scenarios, thus their applications may be largely restricted. There is a pressing need for more flexible simulators that rely on minimum model assumptions and are highly adaptable to produce data for a wide range of scenarios. In this study, we propose SimuBP, a simulator of population dynamics and mutations based on branching processes. SimuBP generates data based on a general two-type branching process, which is able to mimic the real cell proliferation and mutation process. Through simulations under traditional FA assumptions, we demonstrate that the data generated by SimuBP follow expected distributions, and exhibit high consistency with those generated by two alternative simulators. The most impressive feature of SimuBP lies in its flexibility, which enables the simulation of data analogous to real fluctuation experiments. We demonstrate the application of SimuBP through examples of estimating mutation rates. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Axioms Multidisciplinary Digital Publishing Institute

SimuBP: A Simulator of Population Dynamics and Mutations Based on Branching Processes

Axioms , Volume 12 (2) – Jan 18, 2023

SimuBP: A Simulator of Population Dynamics and Mutations Based on Branching Processes

Axioms , Volume 12 (2) – Jan 18, 2023

Abstract

Originating from the Luria–Delbrück experiment in 1943, fluctuation analysis (FA) has been well developed to demonstrate random mutagenesis in microbial cell populations and infer mutation rates. Despite the remarkable progress in its theory and applications, FA often faces difficulties in the computation perspective, due to the lack of appropriate simulators. Existing simulation algorithms are usually designed specifically for particular scenarios, thus their applications may be largely restricted. There is a pressing need for more flexible simulators that rely on minimum model assumptions and are highly adaptable to produce data for a wide range of scenarios. In this study, we propose SimuBP, a simulator of population dynamics and mutations based on branching processes. SimuBP generates data based on a general two-type branching process, which is able to mimic the real cell proliferation and mutation process. Through simulations under traditional FA assumptions, we demonstrate that the data generated by SimuBP follow expected distributions, and exhibit high consistency with those generated by two alternative simulators. The most impressive feature of SimuBP lies in its flexibility, which enables the simulation of data analogous to real fluctuation experiments. We demonstrate the application of SimuBP through examples of estimating mutation rates.

Loading next page...
 
/lp/multidisciplinary-digital-publishing-institute/simubp-a-simulator-of-population-dynamics-and-mutations-based-on-XBTSaxPrnU
Publisher
Multidisciplinary Digital Publishing Institute
Copyright
© 1996-2023 MDPI (Basel, Switzerland) unless otherwise stated Disclaimer Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. Terms and Conditions Privacy Policy
ISSN
2075-1680
DOI
10.3390/axioms12020101
Publisher site
See Article on Publisher Site

Abstract

Originating from the Luria–Delbrück experiment in 1943, fluctuation analysis (FA) has been well developed to demonstrate random mutagenesis in microbial cell populations and infer mutation rates. Despite the remarkable progress in its theory and applications, FA often faces difficulties in the computation perspective, due to the lack of appropriate simulators. Existing simulation algorithms are usually designed specifically for particular scenarios, thus their applications may be largely restricted. There is a pressing need for more flexible simulators that rely on minimum model assumptions and are highly adaptable to produce data for a wide range of scenarios. In this study, we propose SimuBP, a simulator of population dynamics and mutations based on branching processes. SimuBP generates data based on a general two-type branching process, which is able to mimic the real cell proliferation and mutation process. Through simulations under traditional FA assumptions, we demonstrate that the data generated by SimuBP follow expected distributions, and exhibit high consistency with those generated by two alternative simulators. The most impressive feature of SimuBP lies in its flexibility, which enables the simulation of data analogous to real fluctuation experiments. We demonstrate the application of SimuBP through examples of estimating mutation rates.

Journal

AxiomsMultidisciplinary Digital Publishing Institute

Published: Jan 18, 2023

Keywords: fluctuation analysis; population dynamics; mutation; branching process

There are no references for this article.