Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Spectral Treatment of High-Order Emden–Fowler Equations Based on Modified Chebyshev Polynomials

Spectral Treatment of High-Order Emden–Fowler Equations Based on Modified Chebyshev... This paper is devoted to proposing numerical algorithms based on the use of the tau and collocation procedures, two widely used spectral approaches for the numerical treatment of the initial high-order linear and non-linear equations of the singular type, especially those of the high-order Emden–Fowler type. The class of modified Chebyshev polynomials of the third-kind is constructed. This class of polynomials generalizes the class of the third-kind Chebyshev polynomials. A new formula that expresses the first-order derivative of the modified Chebyshev polynomials in terms of their original modified polynomials is established. The establishment of this essential formula is based on reducing a certain terminating hypergeometric function of the type 5F4(1). The development of our suggested numerical algorithms begins with the extraction of a new operational derivative matrix from this derivative formula. Expansion’s convergence study is performed in detail. Some illustrative examples of linear and non-linear Emden–Flower-type equations of different orders are displayed. Our proposed algorithms are compared with some other methods in the literature. This confirms the accuracy and high efficiency of our presented algorithms. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Axioms Multidisciplinary Digital Publishing Institute

Spectral Treatment of High-Order Emden–Fowler Equations Based on Modified Chebyshev Polynomials

Spectral Treatment of High-Order Emden–Fowler Equations Based on Modified Chebyshev Polynomials

Axioms , Volume 12 (2) – Jan 17, 2023

Abstract

This paper is devoted to proposing numerical algorithms based on the use of the tau and collocation procedures, two widely used spectral approaches for the numerical treatment of the initial high-order linear and non-linear equations of the singular type, especially those of the high-order Emden–Fowler type. The class of modified Chebyshev polynomials of the third-kind is constructed. This class of polynomials generalizes the class of the third-kind Chebyshev polynomials. A new formula that expresses the first-order derivative of the modified Chebyshev polynomials in terms of their original modified polynomials is established. The establishment of this essential formula is based on reducing a certain terminating hypergeometric function of the type 5F4(1). The development of our suggested numerical algorithms begins with the extraction of a new operational derivative matrix from this derivative formula. Expansion’s convergence study is performed in detail. Some illustrative examples of linear and non-linear Emden–Flower-type equations of different orders are displayed. Our proposed algorithms are compared with some other methods in the literature. This confirms the accuracy and high efficiency of our presented algorithms.

Loading next page...
 
/lp/multidisciplinary-digital-publishing-institute/spectral-treatment-of-high-order-emden-ndash-fowler-equations-based-on-AiMc2z3UiK
Publisher
Multidisciplinary Digital Publishing Institute
Copyright
© 1996-2023 MDPI (Basel, Switzerland) unless otherwise stated Disclaimer Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. Terms and Conditions Privacy Policy
ISSN
2075-1680
DOI
10.3390/axioms12020099
Publisher site
See Article on Publisher Site

Abstract

This paper is devoted to proposing numerical algorithms based on the use of the tau and collocation procedures, two widely used spectral approaches for the numerical treatment of the initial high-order linear and non-linear equations of the singular type, especially those of the high-order Emden–Fowler type. The class of modified Chebyshev polynomials of the third-kind is constructed. This class of polynomials generalizes the class of the third-kind Chebyshev polynomials. A new formula that expresses the first-order derivative of the modified Chebyshev polynomials in terms of their original modified polynomials is established. The establishment of this essential formula is based on reducing a certain terminating hypergeometric function of the type 5F4(1). The development of our suggested numerical algorithms begins with the extraction of a new operational derivative matrix from this derivative formula. Expansion’s convergence study is performed in detail. Some illustrative examples of linear and non-linear Emden–Flower-type equations of different orders are displayed. Our proposed algorithms are compared with some other methods in the literature. This confirms the accuracy and high efficiency of our presented algorithms.

Journal

AxiomsMultidisciplinary Digital Publishing Institute

Published: Jan 17, 2023

Keywords: Chebyshev polynomials; modified Chebyshev polynomials; initial value problems; singular equations; convergence analysis

There are no references for this article.