Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Association Between Patient and Tumor Characteristics With Clinical Outcomes in Women With Ductal Carcinoma In Situ

Association Between Patient and Tumor Characteristics With Clinical Outcomes in Women With Ductal... Abstract We synthesized the evidence of the association between patient and tumor characteristics with clinical outcomes in women with ductal carcinoma in situ of the breast. We identified five randomized controlled clinical trials and 64 observational studies that were published in English from January 1970 to January 2009. Younger women with clinically presented ductal carcinoma in situ had higher risk of ipsilateral recurrent cancer. African Americans had higher mortality and greater rates of advanced recurrent cancer. Women with larger tumor size, comedo necrosis, worse pathological grading, positive surgical margins, and at a higher risk category, using a composite prognostic index, had worse outcomes. Inconsistent evidence suggested that positive HER2 receptor and negative estrogen receptor status were associated with worse outcomes. Synthesis of evidence was hampered by low statistical power to detect significant differences in predictor categories and inconsistent adjustment practices across the studies. Future research should address composite prediction indices among race groups for all outcomes. We identified five randomized controlled clinical trials (1–9) and 64 observational studies that were presented in 133 publications, including 10 publications that reported the results of the Surveillance, Epidemiology, and End Results (SEER) database analyses (10–19) and 65 articles based on analyses of the American cancer registries and large academic centers (20–84). Age Observational studies and randomized controlled clinical trials reported increased risk of recurrent cancer in younger women after adjustment for treatment, patient’s characteristics, and tumor factors (Table 1). Randomized trials demonstrated that women younger than 40 years experienced an 89% increase in risk of ipsilateral breast tumor recurrence (IBTR) (adjusted hazard ratio [HR] = 1.89, 95% confidence interval [CI] = 1.12 to 3.19) (1). Women younger than 49 years experienced a 117% increase in relative risk of IBTR local ductal carcinoma in situ (DCIS) or invasive carcinoma recurrence (adjusted HR = 2.17, 95% CI = 1.61 to 2.94) (5). Observational studies also demonstrated that younger age was a predictor of poor recurrence independent of treatment and tumor characteristics, with an increased risk of IBTR by 100% (72), 125% (85), or 130% (13). Older women experienced a reduction in risk of local DCIS recurrence by 6% for every additional year of age (adjusted relative risk [RR] = 0.94, 95% CI = 0.89 to 0.99) (16) and incremental decrease in true recurrence by 7% (21,24) and IBTR by 6%–8% per year of age (25). Table 1 Summary of the evidence: association between women and tumor characteristics and patient outcomes* Risk factor  No. of publications  No. of patients  Estimates of risk  Evidence  Age  5 RCTs (1–5); 51 (10,12–17,19–25,40,43,47–49,62,67,71–76,79,81,83–91,93–105)  173 937  Women younger than 40 y had worse outcomes  Moderate  Race  12; 1980 (57); 1997 (75); 2003 (13,15–19,49,73,83,84)  123 853  African American women had higher mortality and advanced cancer  Low  Menopause  8 (10,13,25,67,71,73,84,87)  3718  Premenopausal women had worse outcomes than postmenopausal women  Low  Menarche age  1 (10)  709  NS  Low  Marital status  2 (10,15)  1812  Single or unmarried women had worse outcomes  Low  Education  1 (10)  709  NS  Low  Hormone replacement therapy  4 (10,84,89,104)  1899  NS  Low  Oral contraceptives  1 (10)  709  NS  Low  Age at first birth  1 (10)  709  NS  Low  Parity  1 (10)  709  NS  Low  Family history  12 (10,13,43,48,73,75,76,83,86–89)  4595  Women with family history had worse outcomes  Low  Alcohol intake  1 (10)  709  NS  Low  Body mass index; weight  2 (10,13); 1 (73)  1745; 198  Obese women may have worse outcomes  Low  Comorbidity  2 (15,16)  4512  Women with one or more comorbidities had worse outcomes  Low  Breast density  2 (27,64)  6466  Women with higher density had worse outcomes  Low  Methods of detection  2 RCTs (1,5); 23 (13,21,24,43,48,71,73,85–95,100,103,106–108)  2579; 8878  Women with clinical symptoms had worse outcomes  Moderate  Year of diagnosis; time since diagnosis  1 (12); 2 (11,49)  7072; 25 476  Women diagnosed with DCIS after screening mammography became common had lower standardized to the general population 10-y breast cancer mortality ratio. Incidence of contralateral DCIS immediately after diagnosis of the primary DCIS dramatically increased due to active surveillance  Low  Total volume; volume of excision  1 (24); 3 (21,24,94)  148; 1309  Women with less excision volume (≤60 cm3) had worse outcomes  Low  No. of slides with DICS  1 (24)  148  Women with greater number of slides with DCIS in the specimen had worse outcomes  Low  Composed risk estimation  1 RCT (2); 13 (16,18,22,36–38,45,63,89,99,106,109,110)  775; 20 736  Women at higher risk category using Van Nuys index had worse outcomes  Moderate  Microinvasion  1 RCT (2); 4 (50,80,83,104)  1065  NS  Low  Tumor size  2 RCTs (3,9); 39 (10,15,16,19,24,37,40,45,47,62,67,71,73,74,83–87,89–91,93,94,97,99–101,103,104,106,107,111,116)  1095; 53 344  Women with larger tumors may have worse ipsilateral cancer  Low  Architecture: columnar cell change, comedo; cribriform, micropapillary, and solid types; necrosis  2 RCTs (1,9); 25 (10,16,19,23,30,33,43,48,67,71,73,75,86,91,93,95,96,100,103,107,111,113,117,118) 8 (20–22, 24,45,49,72,107); 19 (15,23,28,40,45,47,48,62,71,83,85,91,100,103, 113–115,117,118); 3 RCTs (2,5,9)  1693; 47 346; 24 709; 4525; 2869  Consistent evidence that women with comedo necrosis DCIS had worse outcomes. Solid, cribriform, or papillary DCIS were associated with worse outcomes  High; low  Calcification  6 (20,21,23,24,91,103)  808  The lack of calcification was strongly associated with DCIS or invasive carcinoma recurrence  Low  Antiapoptotic Bcl-2 gene expression  1 (119); 1 (92)  216  High vs low NS; women with positive Bcl-2 vs negative had lower odds of recurrence  Low; low  Expression of p21 cyclin-dependent kinase inhibitor  4 (92,104,116,121)  435  NS  Low  Estrogen receptors; progesterone receptors; HER2  8 (53,84,85,92,104,105,116,119); 6 (53,84,92,104,116,119); 5 (104,105,116,120,121)  1421; 1447; 660  Inconsistent evidence that women with positive ER had lower risk of recurrence. Women with HER2-positive status tended having worse ipsilateral cancer. HER4-positive women with expression had lower risk of recurrent cancer  Low  Tumor grade  2 RCTs (2,9); 20 (16,19,24,25,45,48,53,55,62,74,85,87,88,90,93,108,114,116,120,122)  1401; 45 765  Consistent evidence that women with high-grade DCIS had worse ipsilateral cancer  High  Tumor suppressor protein 53  4 (92,104,116,119)  435  NS  Low  Positive surgical margins  3 RCTs (1,3,9); 11 with adjusted estimates (15,40,73,85,90,93,95,102,105,116,123)  2362  Women with positive margins had worse outcomes. Involved, close, and unknown margins were associated with worse outcomes. Women with negative margins of 10 mm or more had better outcomes  High  Risk factor  No. of publications  No. of patients  Estimates of risk  Evidence  Age  5 RCTs (1–5); 51 (10,12–17,19–25,40,43,47–49,62,67,71–76,79,81,83–91,93–105)  173 937  Women younger than 40 y had worse outcomes  Moderate  Race  12; 1980 (57); 1997 (75); 2003 (13,15–19,49,73,83,84)  123 853  African American women had higher mortality and advanced cancer  Low  Menopause  8 (10,13,25,67,71,73,84,87)  3718  Premenopausal women had worse outcomes than postmenopausal women  Low  Menarche age  1 (10)  709  NS  Low  Marital status  2 (10,15)  1812  Single or unmarried women had worse outcomes  Low  Education  1 (10)  709  NS  Low  Hormone replacement therapy  4 (10,84,89,104)  1899  NS  Low  Oral contraceptives  1 (10)  709  NS  Low  Age at first birth  1 (10)  709  NS  Low  Parity  1 (10)  709  NS  Low  Family history  12 (10,13,43,48,73,75,76,83,86–89)  4595  Women with family history had worse outcomes  Low  Alcohol intake  1 (10)  709  NS  Low  Body mass index; weight  2 (10,13); 1 (73)  1745; 198  Obese women may have worse outcomes  Low  Comorbidity  2 (15,16)  4512  Women with one or more comorbidities had worse outcomes  Low  Breast density  2 (27,64)  6466  Women with higher density had worse outcomes  Low  Methods of detection  2 RCTs (1,5); 23 (13,21,24,43,48,71,73,85–95,100,103,106–108)  2579; 8878  Women with clinical symptoms had worse outcomes  Moderate  Year of diagnosis; time since diagnosis  1 (12); 2 (11,49)  7072; 25 476  Women diagnosed with DCIS after screening mammography became common had lower standardized to the general population 10-y breast cancer mortality ratio. Incidence of contralateral DCIS immediately after diagnosis of the primary DCIS dramatically increased due to active surveillance  Low  Total volume; volume of excision  1 (24); 3 (21,24,94)  148; 1309  Women with less excision volume (≤60 cm3) had worse outcomes  Low  No. of slides with DICS  1 (24)  148  Women with greater number of slides with DCIS in the specimen had worse outcomes  Low  Composed risk estimation  1 RCT (2); 13 (16,18,22,36–38,45,63,89,99,106,109,110)  775; 20 736  Women at higher risk category using Van Nuys index had worse outcomes  Moderate  Microinvasion  1 RCT (2); 4 (50,80,83,104)  1065  NS  Low  Tumor size  2 RCTs (3,9); 39 (10,15,16,19,24,37,40,45,47,62,67,71,73,74,83–87,89–91,93,94,97,99–101,103,104,106,107,111,116)  1095; 53 344  Women with larger tumors may have worse ipsilateral cancer  Low  Architecture: columnar cell change, comedo; cribriform, micropapillary, and solid types; necrosis  2 RCTs (1,9); 25 (10,16,19,23,30,33,43,48,67,71,73,75,86,91,93,95,96,100,103,107,111,113,117,118) 8 (20–22, 24,45,49,72,107); 19 (15,23,28,40,45,47,48,62,71,83,85,91,100,103, 113–115,117,118); 3 RCTs (2,5,9)  1693; 47 346; 24 709; 4525; 2869  Consistent evidence that women with comedo necrosis DCIS had worse outcomes. Solid, cribriform, or papillary DCIS were associated with worse outcomes  High; low  Calcification  6 (20,21,23,24,91,103)  808  The lack of calcification was strongly associated with DCIS or invasive carcinoma recurrence  Low  Antiapoptotic Bcl-2 gene expression  1 (119); 1 (92)  216  High vs low NS; women with positive Bcl-2 vs negative had lower odds of recurrence  Low; low  Expression of p21 cyclin-dependent kinase inhibitor  4 (92,104,116,121)  435  NS  Low  Estrogen receptors; progesterone receptors; HER2  8 (53,84,85,92,104,105,116,119); 6 (53,84,92,104,116,119); 5 (104,105,116,120,121)  1421; 1447; 660  Inconsistent evidence that women with positive ER had lower risk of recurrence. Women with HER2-positive status tended having worse ipsilateral cancer. HER4-positive women with expression had lower risk of recurrent cancer  Low  Tumor grade  2 RCTs (2,9); 20 (16,19,24,25,45,48,53,55,62,74,85,87,88,90,93,108,114,116,120,122)  1401; 45 765  Consistent evidence that women with high-grade DCIS had worse ipsilateral cancer  High  Tumor suppressor protein 53  4 (92,104,116,119)  435  NS  Low  Positive surgical margins  3 RCTs (1,3,9); 11 with adjusted estimates (15,40,73,85,90,93,95,102,105,116,123)  2362  Women with positive margins had worse outcomes. Involved, close, and unknown margins were associated with worse outcomes. Women with negative margins of 10 mm or more had better outcomes  High  * DCIS = ductal carcinoma in situ; ER = estrogen receptor; NS = not significant; RCT = randomized controlled clinical trial. View Large Premenopausal women had increased risk of local invasive recurrence by 90% (RR = 1.9, 95% CI = 1 to 3.7) (13) to 490% (RR = 5.9, 95% CI = 1.8 to 19.3) (10) when compared with postmenopausal women after adjustment for age. Race Surprisingly, few studies examined racial differences in DCIS outcomes (13,15–17,19,49). Several analyses of the SEER database (13,15–19) found that overall mortality was 35% higher (RR = 1.35, 95% CI = 1.12 to 1.62) in African American vs Caucasian women with DCIS (17). The analyses that adjusted for prognostic variables including tumor size, grade, or necrosis (15,16,18) did not find differences in IBTR, local DCIS recurrence, or local invasive carcinoma recurrence in race subgroups (Figure 1). The analyses that adjusted for age, year, site, and treatments but not for tumor prognostic factors (17,19) reported worse outcomes among black women compared with white women with DCIS. Black women had higher rates of local invasive carcinoma recurrence (RR = 1.5, 95% CI = 1.2 to 2) or any invasive carcinoma (RR = 1.4, 95% CI =1.2 to 1.7) (19). Risk of advanced invasive carcinoma, stage III/IV, was 130% higher in Hispanic vs white women with DCIS (RR = 2.3, 95% CI = 1.1 to 4.8) (19) and 170% in black vs white women (RR = 2.7, 95% CI = 1.7 to 4.4) (19). Figure 1 View largeDownload slide Patient outcomes in African Americans compared with whites, Surveillance, Epidemiology, and End Results database analyses (13,15–17,19). DCIS, ductal carcinoma in situ; L, breast conserving surgery; LR, breast conserving surgery and radiation; T, tamoxifen; M, mastectomy; *, analyses did not compare treatments. Figure 1 View largeDownload slide Patient outcomes in African Americans compared with whites, Surveillance, Epidemiology, and End Results database analyses (13,15–17,19). DCIS, ductal carcinoma in situ; L, breast conserving surgery; LR, breast conserving surgery and radiation; T, tamoxifen; M, mastectomy; *, analyses did not compare treatments. External Hormone Use Hormone replacement therapy before or after diagnosis and treatment for DCIS was not associated with IBTR (10). Relative risk of IBTR was not significant in women who used oral contraceptives when compared with those who never used them (10). Body Mass Index Limited evidence from observational studies (10,13) suggested that obese women (body mass index >31 kg/m2) had a 130% increased risk of IBTR (RR = 2.3, 95% CI = 1.1 to 4.8). The risk of local invasive carcinoma recurrence was significantly greater in overweight (RR = 2.8, 95% CI = 1.0 to 8.1) and obese women (RR = 5.0, 95% CI = 1.1 to 10.8). One study found that women with increased weight (>200 vs ≤200 pounds) had 800% greater odds of grade 2 maximal acute toxicity (moderate to brisk erythema, patchy moist desquamation, mostly confined to skin folds and creases or moderate edema) from adjuvant radiotherapy (odds ratio [OR] = 9.0, 95% CI = 2.6 to 31.7) (73). Marital Status Two observational studies demonstrated greater risk of IBTR in single women (HR = 2.2, 95% CI = 1 to 4.9) (10) or unmarried women (HR = 1.52, 95% CI = 1.08 to 2.13) (15). Family History Positive family history of breast cancer defined as breast cancer in a first- or second-degree relative was significantly associated with local recurrence in one (HR = 3.08, 95% CI = 1.04 to 9.1) (73) of the four studies that examined this association (10,13,73,86). Other studies reported that crude recurrence rates in women older than 50 years with positive family history were greater than those rates in those without family history (43,48,75,76,83,87–89). Methods of Detection Women with clinical symptoms had a 55% increase in risk of IBTR (RR = 1.55, 95% CI = 1.11 to 2.16) (1) to 90% (RR = 1.9, 95% CI = 1.36 to 2.65) (5) when compared to DCIS detected by mammography only in randomized controlled clinical trials. The results from observational studies were less consistent, and an increased risk of 100% (HR of IBTR = 2.05, 95% CI = 1.1 to 3.81) (72) to 170% (RR of invasive carcinoma = 2.7, 95% CI = 1.2 to 6.1) (13) was reported in three (13,72,90) of the nine studies that analyzed the association (10,13,72,85,86,90–93). Year of Diagnosis Generally, observational studies suggested reduction in breast cancer mortality after implementation of mammographic screening in the United States (12,49,87,94). Women diagnosed with DCIS after screening mammography became common (1984–1989; 5547 in SEER database) compared with those diagnosed from 1978 to 1983 (1525 women in SEER database) had a 40% reduction in relative risk of breast cancer death after adjustment for age and race (12). When data was standardized to the general population mortality ratio, women diagnosed with DCIS before screening mammography was common had greater 10-year breast cancer mortality, compared with those diagnosed after wide implementation of breast cancer screening (3.4, 95% CI 2.4 to 4.5 vs 1.9, 95% CI 1.5 to 2.3 respectively) (12). Mammographic Breast Density The results from the National Surgical Adjuvant Breast and Bowel Project B-17 trial (64) suggested that women with higher mammographic breast density (>75% vs <25%) experienced local recurrence (adjusted RR = 3, 95% CI = 1.2 to 3) or any recurrence (adjusted RR = 2.8, 95% CI = 1.3 to 2.8) more often. The Breast Cancer Surveillance Consortium findings suggested that women with high vs low breast density had higher risk of contralateral (HR adjusted for age = 3.1, 95% CI = 1.6 to 6.1) but not ipsilateral invasive recurrence after lumpectomy (27). Comorbidity A study of 1103 women who were diagnosed with DCIS between 1991 and 1992 found that women with one or more comorbidities were more likely to experience IBTR than women with no comorbidities (RR = 1.62) (15). The likelihood of receiving adjuvant radiotherapy is similar in women with and without comorbidities (P = .747) (15). Younger women and women receiving radiotherapy, however, were oversampled. In contrast, another analysis of the same SEER-Medicare database included only women older than 66 years and reported that those with comorbidities did not have an increased risk of IBTR when compared with women without comorbidities (16). Although both analyses used the Charlson comorbidity index, the study of older women did not obtain surgical margin status. Sampling and methodological differences may contribute to different results. Positive Surgical Margins Positive surgical margins were consistently associated with increased IBTR in observational studies and randomized controlled clinical trials (Table 1) despite considerable variability in definitions. The association was significant after adjustment for treatments including adjuvant radiotherapy and tamoxifen (1,5,15,40,73,85,95,124). An analysis of adjusted relative risk suggests that risk of IBTR is reduced with larger widths of negative margins. Margins of 10 mm or more were associated with the largest reduction (98%) in the risk of IBTR, whereas no differences were seen using a cutoff of 2 or 4 mm (40,94,124). Tumor Characteristics Tumor size was positively associated with higher rates of IBTR, though many of the estimates were not statistically significant. Estimates generally classified tumors less than 20 mm as small though some defined small as less than 5 mm. We found consistent evidence that women with high vs low grade of tumor had a 104% increase in odds of IBTR (Figure 2). Comparisons of intermediate (2) vs low (1) grade were much less consistent. Figure 2 View largeDownload slide Local ductal carcinoma in situ (DCIS) or invasive cancer in women with high vs low grade of tumor (results from individual observational studies pooled with random-effects models) (15,16,25,40,45,47,48,62,71,73,74,83,85,90,93,98,100,104,108,116,122,124). Figure 2 View largeDownload slide Local ductal carcinoma in situ (DCIS) or invasive cancer in women with high vs low grade of tumor (results from individual observational studies pooled with random-effects models) (15,16,25,40,45,47,48,62,71,73,74,83,85,90,93,98,100,104,108,116,122,124). Comedo necrosis was consistently and strongly associated with increased risk of IBTR, with hazard ratios generally above 2.0 and as high as 9.3. No study reported a significant association between comedo and non-comedo DCIS and all-cause mortality, breast cancer mortality, contralateral invasive carcinoma, or all events. The association between necrosis and IBTR differed depending on the treatments women had (Figure 3). The association was not significant after mastectomy or skin-sparing mastectomy and inconsistent in direction and significance after lumpectomy plus radiation and in studies that combined all treatment together in analysis. The risk of IBTR in women after lumpectomy was increased by 116%. Figure 3 View largeDownload slide Association between necrosis with ipsilateral DCIS or invasive cancer (results from individual studies pooled with random-effects models) (15,23,28,40,45,47,48,62,71,74,83,85,90,100,113,114). RR, relative risk; HR, hazard rate ratio; OR, odds ratio; *- adjusted estimate. Figure 3 View largeDownload slide Association between necrosis with ipsilateral DCIS or invasive cancer (results from individual studies pooled with random-effects models) (15,23,28,40,45,47,48,62,71,74,83,85,90,100,113,114). RR, relative risk; HR, hazard rate ratio; OR, odds ratio; *- adjusted estimate. Studies of estrogen receptor status and DCIS outcomes are generally limited to small studies, often including approximately 100 cases. Generally, all are consistent in their findings that positive estrogen receptor status is associated with a reduced likelihood of local DCIS or invasive recurrence, although few of the associations are statistically significant. Whether the association was independent of tamoxifen treatment is unclear because adjustment for treatments was not consistent across the studies. The studies investigating the association between progesterone receptor status and patient outcomes showed a tendency toward less IBTR in progesterone receptor–positive women. The relationship between HER2 positivity and recurrence was only studied in relatively small DCIS studies of 129 patients or less. Consistently, investigators have found that women with HER2-positive DCIS were at higher risk of recurrence. HER3 and HER4 have only been evaluated in a single study (120). Women with DCIS and HER4-positive or HER3-negative status had a lower risk of recurrence. Overall Predicted Risk of Local Recurrence Women at higher risk had worse outcomes (18,22,34,36–38,45,63,89,96–99,106,109). The studies applied the exact Van Nuys criteria (nine scores for grade, size, and margin) (22,34,36,45,62,63,89,97–99,106,110) or the USC/Van Nuys Prognostic Index adding age (38,63,89,98). Despite differences in definitions of total score, women in higher risk categories had higher rates of IBTR (Figure 4) (34,36,38,45,63,89,97,99). Women with a maximal score of 12 had a 274% greater risk of IBTR. The association between total score and risk of IBTR was not linear dose response. Maximal increase in relative risk by 740% was observed in women with a score of 5–7 compared with a score of 3–4. Figure 4 View largeDownload slide The association between Van Nuys Prognostic Index Score* with Ipsilateral Cancer. *, higher score indicated greater risk of ipsilateral cancer; L, breast conserving surgery; LR, breast conserving surgery and radiation; T, tamoxifen (34,36,38,45,63,89,97,99). Figure 4 View largeDownload slide The association between Van Nuys Prognostic Index Score* with Ipsilateral Cancer. *, higher score indicated greater risk of ipsilateral cancer; L, breast conserving surgery; LR, breast conserving surgery and radiation; T, tamoxifen (34,36,38,45,63,89,97,99). Women with scores of 10–12, using the USC/Van Nuys Prognostic Index scoring system, had 224% greater odds of mortality compared with women with a 4–6 risk category (89). Breast cancer mortality was examined in four studies (34,36,38,89); one found a significant positive association with greater predicted risk (OR = 8.61, 95% CI = 1.06 to 70.17) in women with scores of 10–12 in the Van Nuys index compared with those with scores of 4–6 (89). The odds of any event were 509% higher (OR = 6.09, 95% CI = 2.40 to 15.50) in women at the highest Van Nuys index scores category compared with the lowest score (89). Discussion Synthesis of evidence of the association between women's characteristics and patient outcomes was hampered by different definitions of the outcomes and predictor categories, low statistical power to detect differences in outcomes in predictor categories, and inconsistent adjustment for treatment and tumor characteristics across the studies. Why outcomes varied among women's subgroups was not clear. Adjustment for tumor size, grade, or necrosis attenuated racial differences in IBTR in the studies that we identified for this review. Only one SEER analysis examined access to treatment and overall mortality in racial subgroups with DCIS and found that African American women were less likely to receive follow-up radiotherapy and had a significantly increased risk of death (17). Neither comorbidity status nor surgical margin status was included in the analysis because this information is not available in the registries (17). A recently published case series from the Johns Hopkins Medical Institutions (125) found no differences in breast cancer mortality and histology of DCIS in African American women when compared with Caucasians. However, overall mortality, mostly from cardiovascular diseases, was greater in African American women. Difference in screening patterns and access or quality of overall and breast cancer care can contribute to the observed race differences in incident second breast cancer in the United States. Based on a comprehensive literature review, we recommend that future research should evaluate risk of patient outcomes over time to help develop postdiagnostic surveillance policies. Additional work improving the DCIS prognostic index using additive scores or interaction is needed. A prognostic index should be developed for all outcomes, should include women's race, and should be based on multivariate-adjusted regression coefficients. Future research should assess the association between health-care structure and quality, process variables, and patient outcomes. References 1. Bijker N,  Meijnen P,  Peterse JL, et al.  Breast-conserving treatment with or without radiotherapy in ductal carcinoma-in-situ: ten-year results of European Organisation for Research and Treatment of Cancer randomized phase III trial 10853—a study by the EORTC Breast Cancer Cooperative Group and EORTC Radiotherapy Group,  J Clin Oncol ,  2006, vol.  24  21(pg.  3381- 3387) Google Scholar CrossRef Search ADS PubMed  2. Bijker N,  Peterse JL,  Duchateau L, et al.  Risk factors for recurrence and metastasis after breast-conserving therapy for ductal carcinoma-in-situ: analysis of European Organization for Research and Treatment of Cancer Trial 10853,  J Clin Oncol ,  2001, vol.  19  8(pg.  2263- 2271) Google Scholar PubMed  3. Holmberg L,  Garmo H,  Granstrand B, et al.  Absolute risk reductions for local recurrence after postoperative radiotherapy after sector resection for ductal carcinoma in situ of the breast,  J Clin Oncol ,  2008, vol.  26  8(pg.  1247- 1252) Google Scholar CrossRef Search ADS PubMed  4. Houghton J,  George WD,  Cuzick J, et al.  Radiotherapy and tamoxifen in women with completely excised ductal carcinoma in situ of the breast in the UK, Australia, and New Zealand: randomised controlled trial,  Lancet ,  2003, vol.  362  9378(pg.  95- 102) Google Scholar CrossRef Search ADS PubMed  5. Fisher B,  Land S,  Mamounas E, et al.  Prevention of invasive breast cancer in women with ductal carcinoma in situ: an update of the National Surgical Adjuvant Breast and Bowel Project experience,  Semin Oncol ,  2001, vol.  28  4(pg.  400- 418) Google Scholar CrossRef Search ADS PubMed  6. Fisher B,  Dignam J,  Wolmark N, et al.  Tamoxifen in treatment of intraductal breast cancer: National Surgical Adjuvant Breast and Bowel Project B-24 randomised controlled trial,  Lancet ,  1999, vol.  353  9169(pg.  1993- 2000) Google Scholar CrossRef Search ADS PubMed  7. Fisher B,  Costantino J,  Redmond C, et al.  Lumpectomy compared with lumpectomy and radiation therapy for the treatment of intraductal breast cancer,  N Engl J Med ,  1993, vol.  328  22(pg.  1581- 1586) Google Scholar CrossRef Search ADS PubMed  8. Julian TB,  Land SR,  Fourchotte V, et al.  Is sentinel node biopsy necessary in conservatively treated DCIS?,  Ann Surg Oncol ,  2007, vol.  14  8(pg.  2202- 2208) Google Scholar CrossRef Search ADS PubMed  9. Fisher ER,  Dignam J,  Tan-Chiu E, et al.  Pathologic findings from the National Surgical Adjuvant Breast Project (NSABP) eight-year update of Protocol B-17: intraductal carcinoma,  Cancer ,  1999, vol.  86  3(pg.  429- 438) Google Scholar CrossRef Search ADS PubMed  10. Habel LA,  Daling JR,  Newcomb PA, et al.  Risk of recurrence after ductal carcinoma in situ of the breast,  Cancer Epidemiol Biomarkers Prev ,  1998, vol.  7  8(pg.  689- 696) Google Scholar PubMed  11. Habel LA,  Moe RE,  Daling JR, et al.  Risk of contralateral breast cancer among women with carcinoma in situ of the breast,  Ann Surg ,  1997, vol.  225  1(pg.  69- 75) Google Scholar CrossRef Search ADS PubMed  12. Ernster VL,  Barclay J,  Kerlikowske K, et al.  Mortality among women with ductal carcinoma in situ of the breast in the population-based surveillance, epidemiology and end results program,  Arch Intern Med ,  2000, vol.  160  7(pg.  953- 958) Google Scholar CrossRef Search ADS PubMed  13. Kerlikowske K,  Molinaro A,  Cha I, et al.  Characteristics associated with recurrence among women with ductal carcinoma in situ treated by lumpectomy,  J Natl Cancer Inst ,  2003, vol.  95  22(pg.  1692- 1702) Google Scholar CrossRef Search ADS PubMed  14. Schairer C,  Mink PJ,  Carroll L, et al.  Probabilities of death from breast cancer and other causes among female breast cancer patients,  J Natl Cancer Inst ,  2004, vol.  96  17(pg.  1311- 1321) Google Scholar CrossRef Search ADS PubMed  15. Warren JL,  Weaver DL,  Bocklage T, et al.  The frequency of ipsilateral second tumors after breast-conserving surgery for DCIS: a population based analysis,  Cancer ,  2005, vol.  104  9(pg.  1840- 1848) Google Scholar CrossRef Search ADS PubMed  16. Smith BD,  Haffty BG,  Buchholz TA, et al.  Effectiveness of radiation therapy in older women with ductal carcinoma in situ,  J Natl Cancer Inst ,  2006, vol.  98  18(pg.  1302- 1310) Google Scholar CrossRef Search ADS PubMed  17. Joslyn SA.  Ductal carcinoma in situ: trends in geographic, temporal, and demographic patterns of care and survival,  Breast J ,  2006, vol.  12  1(pg.  20- 27) Google Scholar CrossRef Search ADS PubMed  18. Smith GL,  Smith BD,  Haffty BG.  Rationalization and regionalization of treatment for ductal carcinoma in situ of the breast,  Int J Radiat Oncol Biol Phys. ,  2006, vol.  65  5(pg.  1397- 1403) Google Scholar CrossRef Search ADS PubMed  19. Li CI,  Malone KE,  Saltzman BS, et al.  Risk of invasive breast carcinoma among women diagnosed with ductal carcinoma in situ and lobular carcinoma in situ, 1988–2001,  Cancer ,  2006, vol.  106  10(pg.  2104- 2112) Google Scholar CrossRef Search ADS PubMed  20. Kestin LL,  Goldstein NS,  Lacerna MD, et al.  Factors associated with local recurrence of mammographically detected ductal carcinoma in situ in patients given breast-conserving therapy,  Cancer ,  2000, vol.  88  3(pg.  596- 607) Google Scholar CrossRef Search ADS PubMed  21. Vicini FA,  Kestin LL,  Goldstein NS, et al.  Impact of young age on outcome in patients with ductal carcinoma-in-situ treated with breast-conserving therapy,  J Clin Oncol ,  2000, vol.  18  2(pg.  296- 306) Google Scholar PubMed  22. Kestin LL,  Goldstein NS,  Martinez AA, et al.  Mammographically detected ductal carcinoma in situ treated with conservative surgery with or without radiation therapy: patterns of failure and 10-year results,  Ann Surg ,  2000, vol.  231  2(pg.  235- 245) Google Scholar CrossRef Search ADS PubMed  23. Goldstein NS,  Kestin L,  Vicini F.  Intraductal carcinoma of the breast: pathologic features associated with local recurrence in patients treated with breast-conserving therapy,  Am J Surg Pathol ,  2000, vol.  24  8(pg.  1058- 1067) Google Scholar CrossRef Search ADS PubMed  24. Vicini FA,  Kestin LL,  Goldstein NS, et al.  Relationship between excision volume, margin status, and tumor size with the development of local recurrence in patients with ductal carcinoma-in-situ treated with breast-conserving therapy,  J Surg Oncol ,  2001, vol.  76  4(pg.  245- 254) Google Scholar CrossRef Search ADS PubMed  25. Vargas C,  Kestin L,  Go N, et al.  Factors associated with local recurrence and cause-specific survival in patients with ductal carcinoma in situ of the breast treated with breast-conserving therapy or mastectomy,  Int J Radiat Oncol Biol Phys. ,  2005, vol.  63  5(pg.  1514- 1521) Google Scholar CrossRef Search ADS PubMed  26. Pinsky RW,  Rebner M,  Pierce LJ, et al.  Recurrent cancer after breast-conserving surgery with radiation therapy for ductal carcinoma in situ: mammographic features, method of detection, and stage of recurrence,  AJR Am J Roentgenol ,  2007, vol.  189  1(pg.  140- 144) Google Scholar CrossRef Search ADS PubMed  27. Hwang ES,  Miglioretti DL,  Ballard-Barbash R, et al.  Association between breast density and subsequent breast cancer following treatment for ductal carcinoma in situ,  Cancer Epidemiol Biomarkers Prev ,  2007, vol.  16  12(pg.  2587- 2593) Google Scholar CrossRef Search ADS PubMed  28. Warneke J,  Grossklaus D,  Davis J, et al.  Influence of local treatment on the recurrence rate of ductal carcinoma in situ,  J Am Coll Surg ,  1995, vol.  180  6(pg.  683- 688) Google Scholar PubMed  29. West JG,  Qureshi A,  Liao SY, et al.  Multidisciplinary management of ductal carcinoma in situ: a 10-year experience,  Am J Surg ,  2007, vol.  194  4(pg.  532- 534) Google Scholar CrossRef Search ADS PubMed  30. Silverstein MJ,  Waisman JR,  Gierson ED, et al.  Radiation therapy for intraductal carcinoma. Is it an equal alternative?,  Arch Surg ,  1991, vol.  126  4(pg.  424- 428) Google Scholar CrossRef Search ADS PubMed  31. Lee LA,  Silverstein MJ,  Chung CT, et al.  Breast cancer-specific mortality after invasive local recurrence in patients with ductal carcinoma-in-situ of the breast,  Am J Surg ,  2006, vol.  192  4(pg.  416- 419) Google Scholar CrossRef Search ADS PubMed  32. Silverstein MJ.  Ductal carcinoma in situ of the breast: 11 reasons to consider treatment with excision alone,  Womens Health (Lond Engl) ,  2008, vol.  4  6(pg.  565- 577) Google Scholar CrossRef Search ADS   33. Silverstein MJ,  Cohlan BF,  Gierson ED, et al.  Duct carcinoma in situ: 227 cases without microinvasion,  Eur J Cancer ,  1992, vol.  28  2–3(pg.  630- 634) Google Scholar CrossRef Search ADS PubMed  34. Silverstein MJ,  Poller DN,  Waisman JR, et al.  Prognostic classification of breast ductal carcinoma-in-situ,  Lancet ,  1995, vol.  345  8958(pg.  1154- 1157) Google Scholar CrossRef Search ADS PubMed  35. Silverstein MJ,  Barth A,  Poller DN, et al.  Ten-year results comparing mastectomy to excision and radiation therapy for ductal carcinoma in situ of the breast,  Eur J Cancer ,  1995, vol.  31A  9(pg.  1425- 1427) Google Scholar CrossRef Search ADS PubMed  36. Silverstein MJ,  Lagios MD,  Craig PH, et al.  A prognostic index for ductal carcinoma in situ of the breast,  Cancer ,  1996, vol.  77  11(pg.  2267- 2274) Google Scholar CrossRef Search ADS PubMed  37. Nakamura S,  Woo C,  Silberman H, et al.  Breast-conserving therapy for ductal carcinoma in situ: a 20-year experience with excision plus radiation therapy,  Am J Surg ,  2002, vol.  184  5(pg.  403- 409) Google Scholar CrossRef Search ADS PubMed  38. Silverstein MJ.  The University of Southern California/Van Nuys prognostic index for ductal carcinoma in situ of the breast,  Am J Surg ,  2003, vol.  186  4(pg.  337- 343) Google Scholar CrossRef Search ADS PubMed  39. Silverstein MJ,  Buchanan C.  Ductal carcinoma in situ: USC/Van Nuys Prognostic Index and the impact of margin status,  Breast ,  2003, vol.  12  6(pg.  457- 471) Google Scholar CrossRef Search ADS PubMed  40. MacDonald HR,  Silverstein MJ,  Mabry H, et al.  Local control in ductal carcinoma in situ treated by excision alone: incremental benefit of larger margins,  Am J Surg ,  2005, vol.  190  4(pg.  521- 525) Google Scholar CrossRef Search ADS PubMed  41. MacDonald HR,  Silverstein MJ,  Lee LA, et al.  Margin width as the sole determinant of local recurrence after breast conservation in patients with ductal carcinoma in situ of the breast,  Am J Surg ,  2006, vol.  192  4(pg.  420- 422) Google Scholar CrossRef Search ADS PubMed  42. Sumner WEIII,  Koniaris LG,  Snell SE, et al.  Results of 23,810 cases of ductal carcinoma-in-situ,  Ann Surg Oncol ,  2007, vol.  14  5(pg.  1638- 1643) Google Scholar CrossRef Search ADS PubMed  43. Szelei-Stevens KA,  Kuske RR,  Yantsos VA, et al.  The influence of young age and positive family history of breast cancer on the prognosis of ductal carcinoma in situ treated by excision with or without radiation therapy or by mastectomy,  Int J Radiat Oncol Biol Phys. ,  2000, vol.  48  4(pg.  943- 949) Google Scholar CrossRef Search ADS PubMed  44. Ellsworth RE,  Ellsworth DL,  Love B, et al.  Correlation of levels and patterns of genomic instability with histological grading of DCIS,  Ann Surg Oncol ,  2007, vol.  14  11(pg.  3070- 3077) Google Scholar CrossRef Search ADS PubMed  45. Cornfield DB,  Palazzo JP,  Schwartz GF, et al.  The prognostic significance of multiple morphologic features and biologic markers in ductal carcinoma in situ of the breast: a study of a large cohort of patients treated with surgery alone,  Cancer ,  2004, vol.  100  11(pg.  2317- 2327) Google Scholar CrossRef Search ADS PubMed  46. Lara JF,  Young SM,  Velilla RE, et al.  The relevance of occult axillary micrometastasis in ductal carcinoma in situ: a clinicopathologic study with long-term follow-up,  Cancer ,  2003, vol.  98  10(pg.  2105- 2113) Google Scholar CrossRef Search ADS PubMed  47. Sahoo S,  Recant WM,  Jaskowiak N, et al.  Defining negative margins in DCIS patients treated with breast conservation therapy: the University of Chicago experience,  Breast J ,  2005, vol.  11  4(pg.  242- 247) Google Scholar CrossRef Search ADS PubMed  48. Rodrigues N,  Carter D,  Dillon D, et al.  Correlation of clinical and pathologic features with outcome in patients with ductal carcinoma in situ of the breast treated with breast-conserving surgery and radiotherapy,  Int J Radiat Oncol Biol Phys. ,  2002, vol.  54  5(pg.  1331- 1335) Google Scholar CrossRef Search ADS PubMed  49. Innos K,  Horn-Ross PL.  Risk of second primary breast cancers among women with ductal carcinoma in situ of the breast,  Breast Cancer Res Treat ,  2008, vol.  111  3(pg.  531- 540) Google Scholar CrossRef Search ADS PubMed  50. Cox CE,  Hyacinthe M,  Gonzalez RJ, et al.  Cytologic evaluation of lumpectomy margins in patients with ductal carcinoma in situ: clinical outcome,  Ann Surg Oncol ,  1997, vol.  4  8(pg.  644- 649) Google Scholar CrossRef Search ADS PubMed  51. Page DL,  Dupont WD,  Rogers LW, et al.  Continued local recurrence of carcinoma 15–25 years after a diagnosis of low grade ductal carcinoma in situ of the breast treated only by biopsy,  Cancer ,  1995, vol.  76  7(pg.  1197- 1200) Google Scholar CrossRef Search ADS PubMed  52. Sanders ME,  Schuyler PA,  Dupont WD, et al.  The natural history of low-grade ductal carcinoma in situ of the breast in women treated by biopsy only revealed over 30 years of long-term follow-up,  Cancer ,  2005, vol.  103  12(pg.  2481- 2484) Google Scholar CrossRef Search ADS PubMed  53. Kepple J,  Henry-Tillman RS,  Klimberg VS, et al.  The receptor expression pattern in ductal carcinoma in situ predicts recurrence,  Am J Surg ,  2006, vol.  192  1(pg.  68- 71) Google Scholar CrossRef Search ADS PubMed  54. Bowers GJ,  Roettger RH,  McAuley CE, et al.  Breast cancer: the military's experience at Wilford Hall USAF Medical Center,  South Med J ,  1990, vol.  83  12(pg.  1413- 1417) Google Scholar CrossRef Search ADS PubMed  55. Badve S,  A’Hern RP,  Ward AM, et al.  Prediction of local recurrence of ductal carcinoma in situ of the breast using five histological classifications: a comparative study with long follow-up,  Hum Pathol ,  1998, vol.  29  9(pg.  915- 923) Google Scholar CrossRef Search ADS PubMed  56. Ward BA,  McKhann CF,  Ravikumar TS.  Ten-year follow-up of breast carcinoma in situ in Connecticut,  Arch Surg ,  1992, vol.  127  12(pg.  1392- 1395) Google Scholar CrossRef Search ADS PubMed  57. Rosner D,  Bedwani RN,  Vana J, et al.  Noninvasive breast carcinoma: results of a national survey by the American College of Surgeons,  Ann Surg ,  1980, vol.  192  2(pg.  139- 147) Google Scholar CrossRef Search ADS PubMed  58. Nekhlyudov L,  Kroenke CH,  Jung I, et al.  Prospective changes in quality of life after ductal carcinoma-in-situ: results from the Nurses’ Health Study,  J Clin Oncol ,  2006, vol.  24  18(pg.  2822- 2827) Google Scholar CrossRef Search ADS PubMed  59. Jeruss JS,  Vicini FA,  Beitsch PD, et al.  Initial outcomes for patients treated on the American Society of Breast Surgeons MammoSite clinical trial for ductal carcinoma-in-situ of the breast,  Ann Surg Oncol ,  2006, vol.  13  7(pg.  967- 976) Google Scholar CrossRef Search ADS PubMed  60. Benitez PR,  Streeter O,  Vicini F, et al.  Preliminary results and evaluation of MammoSite balloon brachytherapy for partial breast irradiation for pure ductal carcinoma in situ: a phase II clinical study,  Am J Surg ,  2006, vol.  192  4(pg.  427- 433) Google Scholar CrossRef Search ADS PubMed  61. Vicini F,  Beitsch PD,  Quiet CA, et al.  Three-year analysis of treatment efficacy, cosmesis, and toxicity by the American Society of Breast Surgeons MammoSite Breast Brachytherapy Registry Trial in patients treated with accelerated partial breast irradiation (APBI),  Cancer ,  2008, vol.  112  4(pg.  758- 766) Google Scholar CrossRef Search ADS PubMed  62. Neuschatz AC,  DiPetrillo T,  Safaii H, et al.  Margin width as a determinant of local control with and without radiation therapy for ductal carcinoma in situ (DCIS) of the breast,  Int J Cancer ,  2001, vol.  96  suppl(pg.  97- 104) Google Scholar CrossRef Search ADS PubMed  63. MacAusland SG,  Hepel JT,  Chong FK, et al.  An attempt to independently verify the utility of the Van Nuys Prognostic Index for ductal carcinoma in situ,  Cancer ,  2007, vol.  110  12(pg.  2648- 2653) Google Scholar CrossRef Search ADS PubMed  64. Habel LA,  Dignam JJ,  Land SR, et al.  Mammographic density and breast cancer after ductal carcinoma in situ,  J Natl Cancer Inst ,  2004, vol.  96  19(pg.  1467- 1472) Google Scholar CrossRef Search ADS PubMed  65. Deutsch M,  Land SR,  Begovic M, et al.  An association between postoperative radiotherapy for primary breast cancer in 11 National Surgical Adjuvant Breast and Bowel Project (NSABP) studies and the subsequent appearance of pleural mesothelioma,  Am J Clin Oncol ,  2007, vol.  30  3(pg.  294- 296) Google Scholar CrossRef Search ADS PubMed  66. Trisal V,  Qian D,  Wagman LD.  Axillary recurrence in DCIs: is axillary lymphadenectomy warranted?,  Am Surg ,  2004, vol.  70  10(pg.  876- 880) Google Scholar PubMed  67. Wong JS,  Kaelin CM,  Troyan SL, et al.  Prospective study of wide excision alone for ductal carcinoma in situ of the breast,  J Clin Oncol ,  2006, vol.  24  7(pg.  1031- 1036) Google Scholar CrossRef Search ADS PubMed  68. Kinne DW,  Petrek JA,  Osborne MP, et al.  Breast carcinoma in situ,  Arch Surg ,  1989, vol.  124  1(pg.  33- 36) Google Scholar CrossRef Search ADS PubMed  69. Liberman L,  Van Zee KJ,  Dershaw DD, et al.  Mammographic features of local recurrence in women who have undergone breast-conserving therapy for ductal carcinoma in situ,  AJR Am J Roentgenol ,  1997, vol.  168  2(pg.  489- 493) Google Scholar CrossRef Search ADS PubMed  70. Hwang ES,  Samli B,  Tran KN, et al.  Volume of resection in patients treated with breast conservation for ductal carcinoma in situ,  Ann Surg Oncol ,  1998, vol.  5  8(pg.  757- 763) Google Scholar CrossRef Search ADS PubMed  71. Van Zee KJ,  Liberman L,  Samli B, et al.  Long term follow-up of women with ductal carcinoma in situ treated with breast-conserving surgery: the effect of age,  Cancer ,  1999, vol.  86  9(pg.  1757- 1767) Google Scholar CrossRef Search ADS PubMed  72. Rudloff U,  Brogi E,  Brockway JP, et al.  Concurrent lobular neoplasia increases the risk of ipsilateral breast cancer recurrence in patients with ductal carcinoma in situ treated with breast-conserving therapy,  Cancer ,  2009, vol.  115  6(pg.  1203- 1214) Google Scholar CrossRef Search ADS PubMed  73. Ben-David MA,  Sturtz DE,  Griffith KA, et al.  Long-term results of conservative surgery and radiotherapy for ductal carcinoma in situ using lung density correction: the University of Michigan experience,  Breast J ,  2007, vol.  13  4(pg.  392- 400) Google Scholar CrossRef Search ADS PubMed  74. Carlson GW,  Page A,  Johnson E, et al.  Local recurrence of ductal carcinoma in situ after skin-sparing mastectomy,  J Am Coll Surg ,  2007, vol.  204  5(pg.  1074- 1078)  discussion 1078–1080 Google Scholar CrossRef Search ADS PubMed  75. Fowble B,  Hanlon AL,  Fein DA, et al.  Results of conservative surgery and radiation for mammographically detected ductal carcinoma in situ (DCIS),  Int J Radiat Oncol Biol Phys. ,  1997, vol.  38  5(pg.  949- 957) Google Scholar CrossRef Search ADS PubMed  76. Harris EE,  Schultz DJ,  Peters CA, et al.  Relationship of family history and outcome after breast conservation therapy in women with ductal carcinoma in situ of the breast,  Int J Radiat Oncol Biol Phys. ,  2000, vol.  48  4(pg.  933- 941) Google Scholar CrossRef Search ADS PubMed  77. Vapiwala N,  Harris E,  Hwang WT, et al.  Long-term outcome for mammographically detected ductal carcinoma in situ managed with breast conservation treatment: prognostic significance of reexcision,  Cancer J ,  2006, vol.  12  1(pg.  25- 32) Google Scholar CrossRef Search ADS PubMed  78. Metz JM,  Solin LJ.  Long-term outcome after postmastectomy radiation therapy for the treatment of ductal carcinoma in situ of the breast,  Am J Clin Oncol ,  1999, vol.  22  3(pg.  215- 217) Google Scholar CrossRef Search ADS PubMed  79. Turaka A,  Freedman GM,  Li T, et al.  Young age is not associated with increased local recurrence for DCIS treated by breast-conserving surgery and radiation,  J Surg Oncol ,  2009, vol.  100  1(pg.  25- 31) Google Scholar CrossRef Search ADS PubMed  80. Mirza NQ,  Vlastos G,  Meric F, et al.  Ductal carcinoma-in-situ: long-term results of breast-conserving therapy,  Ann Surg Oncol ,  2000, vol.  7  9(pg.  656- 664) Google Scholar CrossRef Search ADS PubMed  81. Jhingran A,  Kim JS,  Buchholz TA, et al.  Age as a predictor of outcome for women with DCIS treated with breast-conserving surgery and radiation: The University of Texas M.D. Anderson Cancer Center experience,  Int J Radiat Oncol Biol Phys. ,  2002, vol.  54  3(pg.  804- 809) Google Scholar CrossRef Search ADS PubMed  82. Chagpar A,  Yen T,  Sahin A, et al.  Intraoperative margin assessment reduces reexcision rates in patients with ductal carcinoma in situ treated with breast-conserving surgery,  Am J Surg ,  2003, vol.  186  4(pg.  371- 377) Google Scholar CrossRef Search ADS PubMed  83. Adepoju LJ,  Symmans WF,  Babiera GV, et al.  Impact of concurrent proliferative high-risk lesions on the risk of ipsilateral breast carcinoma recurrence and contralateral breast carcinoma development in patients with ductal carcinoma in situ treated with breast-conserving therapy,  Cancer ,  2006, vol.  106  1(pg.  42- 50) Google Scholar CrossRef Search ADS PubMed  84. Dawood S,  Broglio K,  Gonzalez-Angulo AM, et al.  Development of new cancers in patients with DCIS: the M.D. Anderson experience,  Ann Surg Oncol ,  2008, vol.  15  1(pg.  244- 249) Google Scholar CrossRef Search ADS PubMed  85. Omlin A,  Amichetti M,  Azria D, et al.  Boost radiotherapy in young women with ductal carcinoma in situ: a multicentre, retrospective study of the Rare Cancer Network,  Lancet Oncol ,  2006, vol.  7  8(pg.  652- 656) Google Scholar CrossRef Search ADS PubMed  86. Cutuli B,  Cohen-Solal-Le Nir C,  De Lafontan B, et al.  Ductal carcinoma in situ of the breast results of conservative and radical treatments in 716 patients,  Eur J Cancer ,  2001, vol.  37  18(pg.  2365- 2372) Google Scholar CrossRef Search ADS PubMed  87. de Roos MA,  de Bock GH,  Baas PC, et al.  Compliance with guidelines is related to better local recurrence-free survival in ductal carcinoma in situ,  Br J Cancer ,  2005, vol.  93  10(pg.  1122- 1127) Google Scholar CrossRef Search ADS PubMed  88. Schouten van der Velden AP,  Peeters PH,  Koot VC, et al.  Local recurrences after conservative treatment of ductal carcinoma-in-situ of the breast without radiotherapy: the effect of age,  Ann Surg Oncol ,  2006, vol.  13  7(pg.  990- 998) Google Scholar CrossRef Search ADS PubMed  89. Di Saverio S,  Catena F,  Santini D, et al.  259 Patients with DCIS of the breast applying USC/Van Nuys prognostic index: a retrospective review with long term follow up,  Breast Cancer Res Treat ,  2008, vol.  109  3(pg.  405- 416) Google Scholar CrossRef Search ADS PubMed  90. Schouten van der Velden AP,  van Vugt R,  Van Dijck JA, et al.  Local recurrences after different treatment strategies for ductal carcinoma in situ of the breast: a population-based study in the East Netherlands,  Int J Radiat Oncol Biol Phys. ,  2007, vol.  69  3(pg.  703- 710) Google Scholar CrossRef Search ADS PubMed  91. Fish EB,  Chapman JA,  Miller NA, et al.  Assessment of treatment for patients with primary ductal carcinoma in situ in the breast,  Ann Surg Oncol ,  1998, vol.  5  8(pg.  724- 732) Google Scholar CrossRef Search ADS PubMed  92. Provenzano E,  Hopper JL,  Giles GG, et al.  Biological markers that predict clinical recurrence in ductal carcinoma in situ of the breast,  Eur J Cancer ,  2003, vol.  39  5(pg.  622- 630) Google Scholar CrossRef Search ADS PubMed  93. Meijnen P,  Oldenburg HS,  Peterse JL, et al.  Clinical outcome after selective treatment of patients diagnosed with ductal carcinoma in situ of the breast,  Ann Surg Oncol ,  2008, vol.  15  1(pg.  235- 243) Google Scholar CrossRef Search ADS PubMed  94. Solin LJ,  Fourquet A,  Vicini FA, et al.  Long-term outcome after breast-conservation treatment with radiation for mammographically detected ductal carcinoma in situ of the breast,  Cancer ,  2005, vol.  103  6(pg.  1137- 1146) Google Scholar CrossRef Search ADS PubMed  95. Cutuli B,  Cohen-Solal-le Nir C,  de Lafontan B, et al.  Breast-conserving therapy for ductal carcinoma in situ of the breast: the French Cancer Centers’ experience,  Int J Radiat Oncol Biol Phys. ,  2002, vol.  53  4(pg.  868- 879) Google Scholar CrossRef Search ADS PubMed  96. Stallard S,  Hole DA,  Purushotham AD, et al.  Ductal carcinoma in situ of the breast—among factors predicting for recurrence, distance from the nipple is important,  Eur J Surg Oncol ,  2001, vol.  27  4(pg.  373- 377) Google Scholar CrossRef Search ADS PubMed  97. Boland GP,  Chan KC,  Knox WF, et al.  Value of the Van Nuys Prognostic Index in prediction of recurrence of ductal carcinoma in situ after breast-conserving surgery,  Br J Surg ,  2003, vol.  90  4(pg.  426- 432) Google Scholar CrossRef Search ADS PubMed  98. Asjoe FT,  Altintas S,  Colpaert C, et al.  The value of the Van Nuys Prognostic Index in ductal carcinoma in situ of the breast: a retrospective analysis,  Breast J ,  2007, vol.  13  4(pg.  359- 367) Google Scholar CrossRef Search ADS PubMed  99. Gilleard O,  Goodman A,  Cooper M, et al.  The significance of the Van Nuys prognostic index in the management of ductal carcinoma in situ,  World J Surg Oncol ,  2008, vol.  6 pg.  61  Google Scholar CrossRef Search ADS PubMed  100. Solin LJ,  Kurtz J,  Fourquet A, et al.  Fifteen-year results of breast-conserving surgery and definitive breast irradiation for the treatment of ductal carcinoma in situ of the breast,  J Clin Oncol ,  1996, vol.  14  3(pg.  754- 763) Google Scholar PubMed  101. Warnberg F,  Bergh J,  Zack M, et al.  Risk factors for subsequent invasive breast cancer and breast cancer death after ductal carcinoma in situ: a population-based case-control study in Sweden,  Cancer Epidemiol Biomarkers Prev ,  2001, vol.  10  5(pg.  495- 499) Google Scholar PubMed  102. Tunon-de-Lara C,  de-Mascarel I,  Mac-Grogan G, et al.  Analysis of 676 cases of ductal carcinoma in situ of the breast from 1971 to 1995: diagnosis and treatment—the experience of one institute,  Am J Clin Oncol ,  2001, vol.  24  6(pg.  531- 536) Google Scholar CrossRef Search ADS PubMed  103. Miller NA,  Chapman JA,  Fish EB, et al.  In situ duct carcinoma of the breast: clinical and histopathologic factors and association with recurrent carcinoma,  Breast J ,  2001, vol.  7  5(pg.  292- 302) Google Scholar CrossRef Search ADS PubMed  104. Roka S,  Rudas M,  Taucher S, et al.  High nuclear grade and negative estrogen receptor are significant risk factors for recurrence in DCIS,  Eur J Surg Oncol ,  2004, vol.  30  3(pg.  243- 247) Google Scholar CrossRef Search ADS PubMed  105. Wilson GR,  Cramer A,  Welman A, et al.  Activated c-SRC in ductal carcinoma in situ correlates with high tumour grade, high proliferation and HER2 positivity,  Br J Cancer ,  2006, vol.  95  10(pg.  1410- 1414) Google Scholar CrossRef Search ADS PubMed  106. Ringberg A,  Idvall I,  Ferno M, et al.  Ipsilateral local recurrence in relation to therapy and morphological characteristics in patients with ductal carcinoma in situ of the breast,  Eur J Surg Oncol ,  2000, vol.  26  5(pg.  444- 451) Google Scholar CrossRef Search ADS PubMed  107. Ottesen GL,  Graversen HP,  Blichert-Toft M, et al.  Ductal carcinoma in situ of the female breast. Short-term results of a prospective nationwide study. The Danish Breast Cancer Cooperative Group,  Am J Surg Pathol ,  1992, vol.  16  12(pg.  1183- 1196) Google Scholar CrossRef Search ADS PubMed  108. Bellamy CO,  McDonald C,  Salter DM, et al.  Noninvasive ductal carcinoma of the breast: the relevance of histologic categorization,  Hum Pathol ,  1993, vol.  24  1(pg.  16- 23) Google Scholar CrossRef Search ADS PubMed  109. Holland PA,  Gandhi A,  Knox WF, et al.  The importance of complete excision in the prevention of local recurrence of ductal carcinoma in situ,  Br J Cancer ,  1998, vol.  77  1(pg.  110- 114) Google Scholar CrossRef Search ADS PubMed  110. de Mascarel I,  Bonichon F,  MacGrogan G, et al.  Application of the van nuys prognostic index in a retrospective series of 367 ductal carcinomas in situ of the breast examined by serial macroscopic sectioning: practical considerations,  Breast Cancer Res Treat ,  2000, vol.  61  2(pg.  151- 159) Google Scholar CrossRef Search ADS PubMed  111. Cataliotti L,  Distante V,  Ciatto S, et al.  Intraductal breast cancer: review of 183 consecutive cases,  Eur J Cancer ,  1992, vol.  28A  4–5(pg.  917- 920) Google Scholar CrossRef Search ADS PubMed  112. Bonnier P,  Body G,  Bessenay F, et al.  Prognostic factors in ductal carcinoma in situ of the breast: results of a retrospective study of 575 cases. The Association for Research in Oncologic Gynecology,  Eur J Obstet Gynecol Reprod Biol. ,  1999, vol.  84  1(pg.  27- 35) Google Scholar CrossRef Search ADS PubMed  113. Ottesen GL,  Graversen HP,  Blichert-Toft M, et al.  Carcinoma in situ of the female breast. 10 year follow-up results of a prospective nationwide study,  Breast Cancer Res Treat ,  2000, vol.  62  3(pg.  197- 210) Google Scholar CrossRef Search ADS PubMed  114. Chan KC,  Knox WF,  Sinha G, et al.  Extent of excision margin width required in breast conserving surgery for ductal carcinoma in situ,  Cancer ,  2001, vol.  91  1(pg.  9- 16) Google Scholar CrossRef Search ADS PubMed  115. Douglas-Jones AG,  Logan J,  Morgan JM, et al.  Effect of margins of excision on recurrence after local excision of ductal carcinoma in situ of the breast,  J Clin Pathol ,  2002, vol.  55  8(pg.  581- 586) Google Scholar CrossRef Search ADS PubMed  116. de Roos MA,  de Bock GH,  de Vries J, et al.  p53 overexpression is a predictor of local recurrence after treatment for both in situ and invasive ductal carcinoma of the breast,  J Surg Res. ,  2007, vol.  140  1(pg.  109- 114) Google Scholar CrossRef Search ADS PubMed  117. Solin LJ,  Yeh IT,  Kurtz J, et al.  Ductal carcinoma in situ (intraductal carcinoma) of the breast treated with breast-conserving surgery and definitive irradiation. Correlation of pathologic parameters with outcome of treatment,  Cancer ,  1993, vol.  71  8(pg.  2532- 2542) Google Scholar CrossRef Search ADS PubMed  118. Solin LJ,  McCormick B,  Recht A, et al.  Mammographically detected, clinically occult ductal carcinoma in situ treated with breast-conserving surgery and definitive breast irradiation,  Cancer J Sci Am. ,  1996, vol.  2  3(pg.  158- 165) Google Scholar PubMed  119. Ringberg A,  Anagnostaki L,  Anderson H, et al.  Cell biological factors in ductal carcinoma in situ (DCIS) of the breast-relationship to ipsilateral local recurrence and histopathological characteristics,  Eur J Cancer ,  2001, vol.  37  12(pg.  1514- 1522) Google Scholar CrossRef Search ADS PubMed  120. Barnes NL,  Khavari S,  Boland GP, et al.  Absence of HER4 expression predicts recurrence of ductal carcinoma in situ of the breast,  Clin Cancer Res. ,  2005, vol.  11  6(pg.  2163- 2168) Google Scholar CrossRef Search ADS PubMed  121. Warnberg F,  Amini RM,  Goldman M, et al.  Quality aspects of the tissue microarray technique in a population-based cohort with ductal carcinoma in situ of the breast,  Histopathology ,  2008, vol.  53  6(pg.  642- 649) Google Scholar CrossRef Search ADS PubMed  122. Warnberg F,  Nordgren H,  Bergh J, et al.  Ductal carcinoma in situ of the breast from a population-defined cohort: an evaluation of new histopathological classification systems,  Eur J Cancer ,  1999, vol.  35  5(pg.  714- 720) Google Scholar CrossRef Search ADS PubMed  123. Chuwa EW,  Tan VH,  Tan PH, et al.  Treatment for ductal carcinoma in situ in an Asian population: outcome and prognostic factors,  ANZ J Surg ,  2008, vol.  78  1–2(pg.  42- 48) Google Scholar CrossRef Search ADS PubMed  124. Rakovitch E,  Pignol JP,  Hanna W, et al.  Significance of multifocality in ductal carcinoma in situ: outcomes of women treated with breast-conserving therapy,  J Clin Oncol ,  2007, vol.  25  35(pg.  5591- 5596) Google Scholar CrossRef Search ADS PubMed  125. Nassar H,  Sharafaldeen B,  Visvanathan K, et al.  Ductal carcinoma in situ in African American vs Caucasian American women: analysis of clinicopathologic features and outcome,  Cancer ,  2009, vol.  115  14(pg.  3181- 3188) Google Scholar CrossRef Search ADS PubMed  Funding Agency for Healthcare Research and Quality, US Department of Health and Human Services (290-02-0009). Notes The authors are responsible for its content. Statements in this article should not be construed as endorsement by the Agency for Healthcare Research and Quality or the US Department of Health and Human Services. We thank our technical expert panel members (Amy Degnim, MD; Stephen Edge, MD, FACS; Jay Harris, MD; Kelly Hunt, MD, FACS; Karla Kerlikowske, MS, MD; Lee Tan, MD; and Eric Winer, MD) for their scientific and clinical input; Shilpa Amin, MD, MBsc, FAAFP, our Task Order Officer from AHRQ and Stephanie Chang, MD, Medical Officer at AHRQ, for their guidance throughout the project; and Carmen Allegra, MD, for his consultation. We also thank Chip Cody, MD and Tracy Onega, PhD for reviewing and commenting on the draft; the librarian, Judith Stanke, for her contributions to the literature search; Zhihua Bian, candidate for MS in Biostatistics, and Emily Wang, MPH candidate, for abstracting articles and preparing tables; Karen Rashke, Nancy Russell, and Rebecca Schultz for gathering articles and helping to format tables; and Marilyn Eells for editing and formatting the report. © The Author 2010. Published by Oxford University Press. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png JNCI Monographs Oxford University Press

Association Between Patient and Tumor Characteristics With Clinical Outcomes in Women With Ductal Carcinoma In Situ

Loading next page...
 
/lp/oxford-university-press/association-between-patient-and-tumor-characteristics-with-clinical-1xcho6SdEB

References (131)

Publisher
Oxford University Press
Copyright
© The Author 2010. Published by Oxford University Press.
ISSN
1052-6773
eISSN
1745-6614
DOI
10.1093/jncimonographs/lgq034
pmid
20956815
Publisher site
See Article on Publisher Site

Abstract

Abstract We synthesized the evidence of the association between patient and tumor characteristics with clinical outcomes in women with ductal carcinoma in situ of the breast. We identified five randomized controlled clinical trials and 64 observational studies that were published in English from January 1970 to January 2009. Younger women with clinically presented ductal carcinoma in situ had higher risk of ipsilateral recurrent cancer. African Americans had higher mortality and greater rates of advanced recurrent cancer. Women with larger tumor size, comedo necrosis, worse pathological grading, positive surgical margins, and at a higher risk category, using a composite prognostic index, had worse outcomes. Inconsistent evidence suggested that positive HER2 receptor and negative estrogen receptor status were associated with worse outcomes. Synthesis of evidence was hampered by low statistical power to detect significant differences in predictor categories and inconsistent adjustment practices across the studies. Future research should address composite prediction indices among race groups for all outcomes. We identified five randomized controlled clinical trials (1–9) and 64 observational studies that were presented in 133 publications, including 10 publications that reported the results of the Surveillance, Epidemiology, and End Results (SEER) database analyses (10–19) and 65 articles based on analyses of the American cancer registries and large academic centers (20–84). Age Observational studies and randomized controlled clinical trials reported increased risk of recurrent cancer in younger women after adjustment for treatment, patient’s characteristics, and tumor factors (Table 1). Randomized trials demonstrated that women younger than 40 years experienced an 89% increase in risk of ipsilateral breast tumor recurrence (IBTR) (adjusted hazard ratio [HR] = 1.89, 95% confidence interval [CI] = 1.12 to 3.19) (1). Women younger than 49 years experienced a 117% increase in relative risk of IBTR local ductal carcinoma in situ (DCIS) or invasive carcinoma recurrence (adjusted HR = 2.17, 95% CI = 1.61 to 2.94) (5). Observational studies also demonstrated that younger age was a predictor of poor recurrence independent of treatment and tumor characteristics, with an increased risk of IBTR by 100% (72), 125% (85), or 130% (13). Older women experienced a reduction in risk of local DCIS recurrence by 6% for every additional year of age (adjusted relative risk [RR] = 0.94, 95% CI = 0.89 to 0.99) (16) and incremental decrease in true recurrence by 7% (21,24) and IBTR by 6%–8% per year of age (25). Table 1 Summary of the evidence: association between women and tumor characteristics and patient outcomes* Risk factor  No. of publications  No. of patients  Estimates of risk  Evidence  Age  5 RCTs (1–5); 51 (10,12–17,19–25,40,43,47–49,62,67,71–76,79,81,83–91,93–105)  173 937  Women younger than 40 y had worse outcomes  Moderate  Race  12; 1980 (57); 1997 (75); 2003 (13,15–19,49,73,83,84)  123 853  African American women had higher mortality and advanced cancer  Low  Menopause  8 (10,13,25,67,71,73,84,87)  3718  Premenopausal women had worse outcomes than postmenopausal women  Low  Menarche age  1 (10)  709  NS  Low  Marital status  2 (10,15)  1812  Single or unmarried women had worse outcomes  Low  Education  1 (10)  709  NS  Low  Hormone replacement therapy  4 (10,84,89,104)  1899  NS  Low  Oral contraceptives  1 (10)  709  NS  Low  Age at first birth  1 (10)  709  NS  Low  Parity  1 (10)  709  NS  Low  Family history  12 (10,13,43,48,73,75,76,83,86–89)  4595  Women with family history had worse outcomes  Low  Alcohol intake  1 (10)  709  NS  Low  Body mass index; weight  2 (10,13); 1 (73)  1745; 198  Obese women may have worse outcomes  Low  Comorbidity  2 (15,16)  4512  Women with one or more comorbidities had worse outcomes  Low  Breast density  2 (27,64)  6466  Women with higher density had worse outcomes  Low  Methods of detection  2 RCTs (1,5); 23 (13,21,24,43,48,71,73,85–95,100,103,106–108)  2579; 8878  Women with clinical symptoms had worse outcomes  Moderate  Year of diagnosis; time since diagnosis  1 (12); 2 (11,49)  7072; 25 476  Women diagnosed with DCIS after screening mammography became common had lower standardized to the general population 10-y breast cancer mortality ratio. Incidence of contralateral DCIS immediately after diagnosis of the primary DCIS dramatically increased due to active surveillance  Low  Total volume; volume of excision  1 (24); 3 (21,24,94)  148; 1309  Women with less excision volume (≤60 cm3) had worse outcomes  Low  No. of slides with DICS  1 (24)  148  Women with greater number of slides with DCIS in the specimen had worse outcomes  Low  Composed risk estimation  1 RCT (2); 13 (16,18,22,36–38,45,63,89,99,106,109,110)  775; 20 736  Women at higher risk category using Van Nuys index had worse outcomes  Moderate  Microinvasion  1 RCT (2); 4 (50,80,83,104)  1065  NS  Low  Tumor size  2 RCTs (3,9); 39 (10,15,16,19,24,37,40,45,47,62,67,71,73,74,83–87,89–91,93,94,97,99–101,103,104,106,107,111,116)  1095; 53 344  Women with larger tumors may have worse ipsilateral cancer  Low  Architecture: columnar cell change, comedo; cribriform, micropapillary, and solid types; necrosis  2 RCTs (1,9); 25 (10,16,19,23,30,33,43,48,67,71,73,75,86,91,93,95,96,100,103,107,111,113,117,118) 8 (20–22, 24,45,49,72,107); 19 (15,23,28,40,45,47,48,62,71,83,85,91,100,103, 113–115,117,118); 3 RCTs (2,5,9)  1693; 47 346; 24 709; 4525; 2869  Consistent evidence that women with comedo necrosis DCIS had worse outcomes. Solid, cribriform, or papillary DCIS were associated with worse outcomes  High; low  Calcification  6 (20,21,23,24,91,103)  808  The lack of calcification was strongly associated with DCIS or invasive carcinoma recurrence  Low  Antiapoptotic Bcl-2 gene expression  1 (119); 1 (92)  216  High vs low NS; women with positive Bcl-2 vs negative had lower odds of recurrence  Low; low  Expression of p21 cyclin-dependent kinase inhibitor  4 (92,104,116,121)  435  NS  Low  Estrogen receptors; progesterone receptors; HER2  8 (53,84,85,92,104,105,116,119); 6 (53,84,92,104,116,119); 5 (104,105,116,120,121)  1421; 1447; 660  Inconsistent evidence that women with positive ER had lower risk of recurrence. Women with HER2-positive status tended having worse ipsilateral cancer. HER4-positive women with expression had lower risk of recurrent cancer  Low  Tumor grade  2 RCTs (2,9); 20 (16,19,24,25,45,48,53,55,62,74,85,87,88,90,93,108,114,116,120,122)  1401; 45 765  Consistent evidence that women with high-grade DCIS had worse ipsilateral cancer  High  Tumor suppressor protein 53  4 (92,104,116,119)  435  NS  Low  Positive surgical margins  3 RCTs (1,3,9); 11 with adjusted estimates (15,40,73,85,90,93,95,102,105,116,123)  2362  Women with positive margins had worse outcomes. Involved, close, and unknown margins were associated with worse outcomes. Women with negative margins of 10 mm or more had better outcomes  High  Risk factor  No. of publications  No. of patients  Estimates of risk  Evidence  Age  5 RCTs (1–5); 51 (10,12–17,19–25,40,43,47–49,62,67,71–76,79,81,83–91,93–105)  173 937  Women younger than 40 y had worse outcomes  Moderate  Race  12; 1980 (57); 1997 (75); 2003 (13,15–19,49,73,83,84)  123 853  African American women had higher mortality and advanced cancer  Low  Menopause  8 (10,13,25,67,71,73,84,87)  3718  Premenopausal women had worse outcomes than postmenopausal women  Low  Menarche age  1 (10)  709  NS  Low  Marital status  2 (10,15)  1812  Single or unmarried women had worse outcomes  Low  Education  1 (10)  709  NS  Low  Hormone replacement therapy  4 (10,84,89,104)  1899  NS  Low  Oral contraceptives  1 (10)  709  NS  Low  Age at first birth  1 (10)  709  NS  Low  Parity  1 (10)  709  NS  Low  Family history  12 (10,13,43,48,73,75,76,83,86–89)  4595  Women with family history had worse outcomes  Low  Alcohol intake  1 (10)  709  NS  Low  Body mass index; weight  2 (10,13); 1 (73)  1745; 198  Obese women may have worse outcomes  Low  Comorbidity  2 (15,16)  4512  Women with one or more comorbidities had worse outcomes  Low  Breast density  2 (27,64)  6466  Women with higher density had worse outcomes  Low  Methods of detection  2 RCTs (1,5); 23 (13,21,24,43,48,71,73,85–95,100,103,106–108)  2579; 8878  Women with clinical symptoms had worse outcomes  Moderate  Year of diagnosis; time since diagnosis  1 (12); 2 (11,49)  7072; 25 476  Women diagnosed with DCIS after screening mammography became common had lower standardized to the general population 10-y breast cancer mortality ratio. Incidence of contralateral DCIS immediately after diagnosis of the primary DCIS dramatically increased due to active surveillance  Low  Total volume; volume of excision  1 (24); 3 (21,24,94)  148; 1309  Women with less excision volume (≤60 cm3) had worse outcomes  Low  No. of slides with DICS  1 (24)  148  Women with greater number of slides with DCIS in the specimen had worse outcomes  Low  Composed risk estimation  1 RCT (2); 13 (16,18,22,36–38,45,63,89,99,106,109,110)  775; 20 736  Women at higher risk category using Van Nuys index had worse outcomes  Moderate  Microinvasion  1 RCT (2); 4 (50,80,83,104)  1065  NS  Low  Tumor size  2 RCTs (3,9); 39 (10,15,16,19,24,37,40,45,47,62,67,71,73,74,83–87,89–91,93,94,97,99–101,103,104,106,107,111,116)  1095; 53 344  Women with larger tumors may have worse ipsilateral cancer  Low  Architecture: columnar cell change, comedo; cribriform, micropapillary, and solid types; necrosis  2 RCTs (1,9); 25 (10,16,19,23,30,33,43,48,67,71,73,75,86,91,93,95,96,100,103,107,111,113,117,118) 8 (20–22, 24,45,49,72,107); 19 (15,23,28,40,45,47,48,62,71,83,85,91,100,103, 113–115,117,118); 3 RCTs (2,5,9)  1693; 47 346; 24 709; 4525; 2869  Consistent evidence that women with comedo necrosis DCIS had worse outcomes. Solid, cribriform, or papillary DCIS were associated with worse outcomes  High; low  Calcification  6 (20,21,23,24,91,103)  808  The lack of calcification was strongly associated with DCIS or invasive carcinoma recurrence  Low  Antiapoptotic Bcl-2 gene expression  1 (119); 1 (92)  216  High vs low NS; women with positive Bcl-2 vs negative had lower odds of recurrence  Low; low  Expression of p21 cyclin-dependent kinase inhibitor  4 (92,104,116,121)  435  NS  Low  Estrogen receptors; progesterone receptors; HER2  8 (53,84,85,92,104,105,116,119); 6 (53,84,92,104,116,119); 5 (104,105,116,120,121)  1421; 1447; 660  Inconsistent evidence that women with positive ER had lower risk of recurrence. Women with HER2-positive status tended having worse ipsilateral cancer. HER4-positive women with expression had lower risk of recurrent cancer  Low  Tumor grade  2 RCTs (2,9); 20 (16,19,24,25,45,48,53,55,62,74,85,87,88,90,93,108,114,116,120,122)  1401; 45 765  Consistent evidence that women with high-grade DCIS had worse ipsilateral cancer  High  Tumor suppressor protein 53  4 (92,104,116,119)  435  NS  Low  Positive surgical margins  3 RCTs (1,3,9); 11 with adjusted estimates (15,40,73,85,90,93,95,102,105,116,123)  2362  Women with positive margins had worse outcomes. Involved, close, and unknown margins were associated with worse outcomes. Women with negative margins of 10 mm or more had better outcomes  High  * DCIS = ductal carcinoma in situ; ER = estrogen receptor; NS = not significant; RCT = randomized controlled clinical trial. View Large Premenopausal women had increased risk of local invasive recurrence by 90% (RR = 1.9, 95% CI = 1 to 3.7) (13) to 490% (RR = 5.9, 95% CI = 1.8 to 19.3) (10) when compared with postmenopausal women after adjustment for age. Race Surprisingly, few studies examined racial differences in DCIS outcomes (13,15–17,19,49). Several analyses of the SEER database (13,15–19) found that overall mortality was 35% higher (RR = 1.35, 95% CI = 1.12 to 1.62) in African American vs Caucasian women with DCIS (17). The analyses that adjusted for prognostic variables including tumor size, grade, or necrosis (15,16,18) did not find differences in IBTR, local DCIS recurrence, or local invasive carcinoma recurrence in race subgroups (Figure 1). The analyses that adjusted for age, year, site, and treatments but not for tumor prognostic factors (17,19) reported worse outcomes among black women compared with white women with DCIS. Black women had higher rates of local invasive carcinoma recurrence (RR = 1.5, 95% CI = 1.2 to 2) or any invasive carcinoma (RR = 1.4, 95% CI =1.2 to 1.7) (19). Risk of advanced invasive carcinoma, stage III/IV, was 130% higher in Hispanic vs white women with DCIS (RR = 2.3, 95% CI = 1.1 to 4.8) (19) and 170% in black vs white women (RR = 2.7, 95% CI = 1.7 to 4.4) (19). Figure 1 View largeDownload slide Patient outcomes in African Americans compared with whites, Surveillance, Epidemiology, and End Results database analyses (13,15–17,19). DCIS, ductal carcinoma in situ; L, breast conserving surgery; LR, breast conserving surgery and radiation; T, tamoxifen; M, mastectomy; *, analyses did not compare treatments. Figure 1 View largeDownload slide Patient outcomes in African Americans compared with whites, Surveillance, Epidemiology, and End Results database analyses (13,15–17,19). DCIS, ductal carcinoma in situ; L, breast conserving surgery; LR, breast conserving surgery and radiation; T, tamoxifen; M, mastectomy; *, analyses did not compare treatments. External Hormone Use Hormone replacement therapy before or after diagnosis and treatment for DCIS was not associated with IBTR (10). Relative risk of IBTR was not significant in women who used oral contraceptives when compared with those who never used them (10). Body Mass Index Limited evidence from observational studies (10,13) suggested that obese women (body mass index >31 kg/m2) had a 130% increased risk of IBTR (RR = 2.3, 95% CI = 1.1 to 4.8). The risk of local invasive carcinoma recurrence was significantly greater in overweight (RR = 2.8, 95% CI = 1.0 to 8.1) and obese women (RR = 5.0, 95% CI = 1.1 to 10.8). One study found that women with increased weight (>200 vs ≤200 pounds) had 800% greater odds of grade 2 maximal acute toxicity (moderate to brisk erythema, patchy moist desquamation, mostly confined to skin folds and creases or moderate edema) from adjuvant radiotherapy (odds ratio [OR] = 9.0, 95% CI = 2.6 to 31.7) (73). Marital Status Two observational studies demonstrated greater risk of IBTR in single women (HR = 2.2, 95% CI = 1 to 4.9) (10) or unmarried women (HR = 1.52, 95% CI = 1.08 to 2.13) (15). Family History Positive family history of breast cancer defined as breast cancer in a first- or second-degree relative was significantly associated with local recurrence in one (HR = 3.08, 95% CI = 1.04 to 9.1) (73) of the four studies that examined this association (10,13,73,86). Other studies reported that crude recurrence rates in women older than 50 years with positive family history were greater than those rates in those without family history (43,48,75,76,83,87–89). Methods of Detection Women with clinical symptoms had a 55% increase in risk of IBTR (RR = 1.55, 95% CI = 1.11 to 2.16) (1) to 90% (RR = 1.9, 95% CI = 1.36 to 2.65) (5) when compared to DCIS detected by mammography only in randomized controlled clinical trials. The results from observational studies were less consistent, and an increased risk of 100% (HR of IBTR = 2.05, 95% CI = 1.1 to 3.81) (72) to 170% (RR of invasive carcinoma = 2.7, 95% CI = 1.2 to 6.1) (13) was reported in three (13,72,90) of the nine studies that analyzed the association (10,13,72,85,86,90–93). Year of Diagnosis Generally, observational studies suggested reduction in breast cancer mortality after implementation of mammographic screening in the United States (12,49,87,94). Women diagnosed with DCIS after screening mammography became common (1984–1989; 5547 in SEER database) compared with those diagnosed from 1978 to 1983 (1525 women in SEER database) had a 40% reduction in relative risk of breast cancer death after adjustment for age and race (12). When data was standardized to the general population mortality ratio, women diagnosed with DCIS before screening mammography was common had greater 10-year breast cancer mortality, compared with those diagnosed after wide implementation of breast cancer screening (3.4, 95% CI 2.4 to 4.5 vs 1.9, 95% CI 1.5 to 2.3 respectively) (12). Mammographic Breast Density The results from the National Surgical Adjuvant Breast and Bowel Project B-17 trial (64) suggested that women with higher mammographic breast density (>75% vs <25%) experienced local recurrence (adjusted RR = 3, 95% CI = 1.2 to 3) or any recurrence (adjusted RR = 2.8, 95% CI = 1.3 to 2.8) more often. The Breast Cancer Surveillance Consortium findings suggested that women with high vs low breast density had higher risk of contralateral (HR adjusted for age = 3.1, 95% CI = 1.6 to 6.1) but not ipsilateral invasive recurrence after lumpectomy (27). Comorbidity A study of 1103 women who were diagnosed with DCIS between 1991 and 1992 found that women with one or more comorbidities were more likely to experience IBTR than women with no comorbidities (RR = 1.62) (15). The likelihood of receiving adjuvant radiotherapy is similar in women with and without comorbidities (P = .747) (15). Younger women and women receiving radiotherapy, however, were oversampled. In contrast, another analysis of the same SEER-Medicare database included only women older than 66 years and reported that those with comorbidities did not have an increased risk of IBTR when compared with women without comorbidities (16). Although both analyses used the Charlson comorbidity index, the study of older women did not obtain surgical margin status. Sampling and methodological differences may contribute to different results. Positive Surgical Margins Positive surgical margins were consistently associated with increased IBTR in observational studies and randomized controlled clinical trials (Table 1) despite considerable variability in definitions. The association was significant after adjustment for treatments including adjuvant radiotherapy and tamoxifen (1,5,15,40,73,85,95,124). An analysis of adjusted relative risk suggests that risk of IBTR is reduced with larger widths of negative margins. Margins of 10 mm or more were associated with the largest reduction (98%) in the risk of IBTR, whereas no differences were seen using a cutoff of 2 or 4 mm (40,94,124). Tumor Characteristics Tumor size was positively associated with higher rates of IBTR, though many of the estimates were not statistically significant. Estimates generally classified tumors less than 20 mm as small though some defined small as less than 5 mm. We found consistent evidence that women with high vs low grade of tumor had a 104% increase in odds of IBTR (Figure 2). Comparisons of intermediate (2) vs low (1) grade were much less consistent. Figure 2 View largeDownload slide Local ductal carcinoma in situ (DCIS) or invasive cancer in women with high vs low grade of tumor (results from individual observational studies pooled with random-effects models) (15,16,25,40,45,47,48,62,71,73,74,83,85,90,93,98,100,104,108,116,122,124). Figure 2 View largeDownload slide Local ductal carcinoma in situ (DCIS) or invasive cancer in women with high vs low grade of tumor (results from individual observational studies pooled with random-effects models) (15,16,25,40,45,47,48,62,71,73,74,83,85,90,93,98,100,104,108,116,122,124). Comedo necrosis was consistently and strongly associated with increased risk of IBTR, with hazard ratios generally above 2.0 and as high as 9.3. No study reported a significant association between comedo and non-comedo DCIS and all-cause mortality, breast cancer mortality, contralateral invasive carcinoma, or all events. The association between necrosis and IBTR differed depending on the treatments women had (Figure 3). The association was not significant after mastectomy or skin-sparing mastectomy and inconsistent in direction and significance after lumpectomy plus radiation and in studies that combined all treatment together in analysis. The risk of IBTR in women after lumpectomy was increased by 116%. Figure 3 View largeDownload slide Association between necrosis with ipsilateral DCIS or invasive cancer (results from individual studies pooled with random-effects models) (15,23,28,40,45,47,48,62,71,74,83,85,90,100,113,114). RR, relative risk; HR, hazard rate ratio; OR, odds ratio; *- adjusted estimate. Figure 3 View largeDownload slide Association between necrosis with ipsilateral DCIS or invasive cancer (results from individual studies pooled with random-effects models) (15,23,28,40,45,47,48,62,71,74,83,85,90,100,113,114). RR, relative risk; HR, hazard rate ratio; OR, odds ratio; *- adjusted estimate. Studies of estrogen receptor status and DCIS outcomes are generally limited to small studies, often including approximately 100 cases. Generally, all are consistent in their findings that positive estrogen receptor status is associated with a reduced likelihood of local DCIS or invasive recurrence, although few of the associations are statistically significant. Whether the association was independent of tamoxifen treatment is unclear because adjustment for treatments was not consistent across the studies. The studies investigating the association between progesterone receptor status and patient outcomes showed a tendency toward less IBTR in progesterone receptor–positive women. The relationship between HER2 positivity and recurrence was only studied in relatively small DCIS studies of 129 patients or less. Consistently, investigators have found that women with HER2-positive DCIS were at higher risk of recurrence. HER3 and HER4 have only been evaluated in a single study (120). Women with DCIS and HER4-positive or HER3-negative status had a lower risk of recurrence. Overall Predicted Risk of Local Recurrence Women at higher risk had worse outcomes (18,22,34,36–38,45,63,89,96–99,106,109). The studies applied the exact Van Nuys criteria (nine scores for grade, size, and margin) (22,34,36,45,62,63,89,97–99,106,110) or the USC/Van Nuys Prognostic Index adding age (38,63,89,98). Despite differences in definitions of total score, women in higher risk categories had higher rates of IBTR (Figure 4) (34,36,38,45,63,89,97,99). Women with a maximal score of 12 had a 274% greater risk of IBTR. The association between total score and risk of IBTR was not linear dose response. Maximal increase in relative risk by 740% was observed in women with a score of 5–7 compared with a score of 3–4. Figure 4 View largeDownload slide The association between Van Nuys Prognostic Index Score* with Ipsilateral Cancer. *, higher score indicated greater risk of ipsilateral cancer; L, breast conserving surgery; LR, breast conserving surgery and radiation; T, tamoxifen (34,36,38,45,63,89,97,99). Figure 4 View largeDownload slide The association between Van Nuys Prognostic Index Score* with Ipsilateral Cancer. *, higher score indicated greater risk of ipsilateral cancer; L, breast conserving surgery; LR, breast conserving surgery and radiation; T, tamoxifen (34,36,38,45,63,89,97,99). Women with scores of 10–12, using the USC/Van Nuys Prognostic Index scoring system, had 224% greater odds of mortality compared with women with a 4–6 risk category (89). Breast cancer mortality was examined in four studies (34,36,38,89); one found a significant positive association with greater predicted risk (OR = 8.61, 95% CI = 1.06 to 70.17) in women with scores of 10–12 in the Van Nuys index compared with those with scores of 4–6 (89). The odds of any event were 509% higher (OR = 6.09, 95% CI = 2.40 to 15.50) in women at the highest Van Nuys index scores category compared with the lowest score (89). Discussion Synthesis of evidence of the association between women's characteristics and patient outcomes was hampered by different definitions of the outcomes and predictor categories, low statistical power to detect differences in outcomes in predictor categories, and inconsistent adjustment for treatment and tumor characteristics across the studies. Why outcomes varied among women's subgroups was not clear. Adjustment for tumor size, grade, or necrosis attenuated racial differences in IBTR in the studies that we identified for this review. Only one SEER analysis examined access to treatment and overall mortality in racial subgroups with DCIS and found that African American women were less likely to receive follow-up radiotherapy and had a significantly increased risk of death (17). Neither comorbidity status nor surgical margin status was included in the analysis because this information is not available in the registries (17). A recently published case series from the Johns Hopkins Medical Institutions (125) found no differences in breast cancer mortality and histology of DCIS in African American women when compared with Caucasians. However, overall mortality, mostly from cardiovascular diseases, was greater in African American women. Difference in screening patterns and access or quality of overall and breast cancer care can contribute to the observed race differences in incident second breast cancer in the United States. Based on a comprehensive literature review, we recommend that future research should evaluate risk of patient outcomes over time to help develop postdiagnostic surveillance policies. Additional work improving the DCIS prognostic index using additive scores or interaction is needed. A prognostic index should be developed for all outcomes, should include women's race, and should be based on multivariate-adjusted regression coefficients. Future research should assess the association between health-care structure and quality, process variables, and patient outcomes. References 1. Bijker N,  Meijnen P,  Peterse JL, et al.  Breast-conserving treatment with or without radiotherapy in ductal carcinoma-in-situ: ten-year results of European Organisation for Research and Treatment of Cancer randomized phase III trial 10853—a study by the EORTC Breast Cancer Cooperative Group and EORTC Radiotherapy Group,  J Clin Oncol ,  2006, vol.  24  21(pg.  3381- 3387) Google Scholar CrossRef Search ADS PubMed  2. Bijker N,  Peterse JL,  Duchateau L, et al.  Risk factors for recurrence and metastasis after breast-conserving therapy for ductal carcinoma-in-situ: analysis of European Organization for Research and Treatment of Cancer Trial 10853,  J Clin Oncol ,  2001, vol.  19  8(pg.  2263- 2271) Google Scholar PubMed  3. Holmberg L,  Garmo H,  Granstrand B, et al.  Absolute risk reductions for local recurrence after postoperative radiotherapy after sector resection for ductal carcinoma in situ of the breast,  J Clin Oncol ,  2008, vol.  26  8(pg.  1247- 1252) Google Scholar CrossRef Search ADS PubMed  4. Houghton J,  George WD,  Cuzick J, et al.  Radiotherapy and tamoxifen in women with completely excised ductal carcinoma in situ of the breast in the UK, Australia, and New Zealand: randomised controlled trial,  Lancet ,  2003, vol.  362  9378(pg.  95- 102) Google Scholar CrossRef Search ADS PubMed  5. Fisher B,  Land S,  Mamounas E, et al.  Prevention of invasive breast cancer in women with ductal carcinoma in situ: an update of the National Surgical Adjuvant Breast and Bowel Project experience,  Semin Oncol ,  2001, vol.  28  4(pg.  400- 418) Google Scholar CrossRef Search ADS PubMed  6. Fisher B,  Dignam J,  Wolmark N, et al.  Tamoxifen in treatment of intraductal breast cancer: National Surgical Adjuvant Breast and Bowel Project B-24 randomised controlled trial,  Lancet ,  1999, vol.  353  9169(pg.  1993- 2000) Google Scholar CrossRef Search ADS PubMed  7. Fisher B,  Costantino J,  Redmond C, et al.  Lumpectomy compared with lumpectomy and radiation therapy for the treatment of intraductal breast cancer,  N Engl J Med ,  1993, vol.  328  22(pg.  1581- 1586) Google Scholar CrossRef Search ADS PubMed  8. Julian TB,  Land SR,  Fourchotte V, et al.  Is sentinel node biopsy necessary in conservatively treated DCIS?,  Ann Surg Oncol ,  2007, vol.  14  8(pg.  2202- 2208) Google Scholar CrossRef Search ADS PubMed  9. Fisher ER,  Dignam J,  Tan-Chiu E, et al.  Pathologic findings from the National Surgical Adjuvant Breast Project (NSABP) eight-year update of Protocol B-17: intraductal carcinoma,  Cancer ,  1999, vol.  86  3(pg.  429- 438) Google Scholar CrossRef Search ADS PubMed  10. Habel LA,  Daling JR,  Newcomb PA, et al.  Risk of recurrence after ductal carcinoma in situ of the breast,  Cancer Epidemiol Biomarkers Prev ,  1998, vol.  7  8(pg.  689- 696) Google Scholar PubMed  11. Habel LA,  Moe RE,  Daling JR, et al.  Risk of contralateral breast cancer among women with carcinoma in situ of the breast,  Ann Surg ,  1997, vol.  225  1(pg.  69- 75) Google Scholar CrossRef Search ADS PubMed  12. Ernster VL,  Barclay J,  Kerlikowske K, et al.  Mortality among women with ductal carcinoma in situ of the breast in the population-based surveillance, epidemiology and end results program,  Arch Intern Med ,  2000, vol.  160  7(pg.  953- 958) Google Scholar CrossRef Search ADS PubMed  13. Kerlikowske K,  Molinaro A,  Cha I, et al.  Characteristics associated with recurrence among women with ductal carcinoma in situ treated by lumpectomy,  J Natl Cancer Inst ,  2003, vol.  95  22(pg.  1692- 1702) Google Scholar CrossRef Search ADS PubMed  14. Schairer C,  Mink PJ,  Carroll L, et al.  Probabilities of death from breast cancer and other causes among female breast cancer patients,  J Natl Cancer Inst ,  2004, vol.  96  17(pg.  1311- 1321) Google Scholar CrossRef Search ADS PubMed  15. Warren JL,  Weaver DL,  Bocklage T, et al.  The frequency of ipsilateral second tumors after breast-conserving surgery for DCIS: a population based analysis,  Cancer ,  2005, vol.  104  9(pg.  1840- 1848) Google Scholar CrossRef Search ADS PubMed  16. Smith BD,  Haffty BG,  Buchholz TA, et al.  Effectiveness of radiation therapy in older women with ductal carcinoma in situ,  J Natl Cancer Inst ,  2006, vol.  98  18(pg.  1302- 1310) Google Scholar CrossRef Search ADS PubMed  17. Joslyn SA.  Ductal carcinoma in situ: trends in geographic, temporal, and demographic patterns of care and survival,  Breast J ,  2006, vol.  12  1(pg.  20- 27) Google Scholar CrossRef Search ADS PubMed  18. Smith GL,  Smith BD,  Haffty BG.  Rationalization and regionalization of treatment for ductal carcinoma in situ of the breast,  Int J Radiat Oncol Biol Phys. ,  2006, vol.  65  5(pg.  1397- 1403) Google Scholar CrossRef Search ADS PubMed  19. Li CI,  Malone KE,  Saltzman BS, et al.  Risk of invasive breast carcinoma among women diagnosed with ductal carcinoma in situ and lobular carcinoma in situ, 1988–2001,  Cancer ,  2006, vol.  106  10(pg.  2104- 2112) Google Scholar CrossRef Search ADS PubMed  20. Kestin LL,  Goldstein NS,  Lacerna MD, et al.  Factors associated with local recurrence of mammographically detected ductal carcinoma in situ in patients given breast-conserving therapy,  Cancer ,  2000, vol.  88  3(pg.  596- 607) Google Scholar CrossRef Search ADS PubMed  21. Vicini FA,  Kestin LL,  Goldstein NS, et al.  Impact of young age on outcome in patients with ductal carcinoma-in-situ treated with breast-conserving therapy,  J Clin Oncol ,  2000, vol.  18  2(pg.  296- 306) Google Scholar PubMed  22. Kestin LL,  Goldstein NS,  Martinez AA, et al.  Mammographically detected ductal carcinoma in situ treated with conservative surgery with or without radiation therapy: patterns of failure and 10-year results,  Ann Surg ,  2000, vol.  231  2(pg.  235- 245) Google Scholar CrossRef Search ADS PubMed  23. Goldstein NS,  Kestin L,  Vicini F.  Intraductal carcinoma of the breast: pathologic features associated with local recurrence in patients treated with breast-conserving therapy,  Am J Surg Pathol ,  2000, vol.  24  8(pg.  1058- 1067) Google Scholar CrossRef Search ADS PubMed  24. Vicini FA,  Kestin LL,  Goldstein NS, et al.  Relationship between excision volume, margin status, and tumor size with the development of local recurrence in patients with ductal carcinoma-in-situ treated with breast-conserving therapy,  J Surg Oncol ,  2001, vol.  76  4(pg.  245- 254) Google Scholar CrossRef Search ADS PubMed  25. Vargas C,  Kestin L,  Go N, et al.  Factors associated with local recurrence and cause-specific survival in patients with ductal carcinoma in situ of the breast treated with breast-conserving therapy or mastectomy,  Int J Radiat Oncol Biol Phys. ,  2005, vol.  63  5(pg.  1514- 1521) Google Scholar CrossRef Search ADS PubMed  26. Pinsky RW,  Rebner M,  Pierce LJ, et al.  Recurrent cancer after breast-conserving surgery with radiation therapy for ductal carcinoma in situ: mammographic features, method of detection, and stage of recurrence,  AJR Am J Roentgenol ,  2007, vol.  189  1(pg.  140- 144) Google Scholar CrossRef Search ADS PubMed  27. Hwang ES,  Miglioretti DL,  Ballard-Barbash R, et al.  Association between breast density and subsequent breast cancer following treatment for ductal carcinoma in situ,  Cancer Epidemiol Biomarkers Prev ,  2007, vol.  16  12(pg.  2587- 2593) Google Scholar CrossRef Search ADS PubMed  28. Warneke J,  Grossklaus D,  Davis J, et al.  Influence of local treatment on the recurrence rate of ductal carcinoma in situ,  J Am Coll Surg ,  1995, vol.  180  6(pg.  683- 688) Google Scholar PubMed  29. West JG,  Qureshi A,  Liao SY, et al.  Multidisciplinary management of ductal carcinoma in situ: a 10-year experience,  Am J Surg ,  2007, vol.  194  4(pg.  532- 534) Google Scholar CrossRef Search ADS PubMed  30. Silverstein MJ,  Waisman JR,  Gierson ED, et al.  Radiation therapy for intraductal carcinoma. Is it an equal alternative?,  Arch Surg ,  1991, vol.  126  4(pg.  424- 428) Google Scholar CrossRef Search ADS PubMed  31. Lee LA,  Silverstein MJ,  Chung CT, et al.  Breast cancer-specific mortality after invasive local recurrence in patients with ductal carcinoma-in-situ of the breast,  Am J Surg ,  2006, vol.  192  4(pg.  416- 419) Google Scholar CrossRef Search ADS PubMed  32. Silverstein MJ.  Ductal carcinoma in situ of the breast: 11 reasons to consider treatment with excision alone,  Womens Health (Lond Engl) ,  2008, vol.  4  6(pg.  565- 577) Google Scholar CrossRef Search ADS   33. Silverstein MJ,  Cohlan BF,  Gierson ED, et al.  Duct carcinoma in situ: 227 cases without microinvasion,  Eur J Cancer ,  1992, vol.  28  2–3(pg.  630- 634) Google Scholar CrossRef Search ADS PubMed  34. Silverstein MJ,  Poller DN,  Waisman JR, et al.  Prognostic classification of breast ductal carcinoma-in-situ,  Lancet ,  1995, vol.  345  8958(pg.  1154- 1157) Google Scholar CrossRef Search ADS PubMed  35. Silverstein MJ,  Barth A,  Poller DN, et al.  Ten-year results comparing mastectomy to excision and radiation therapy for ductal carcinoma in situ of the breast,  Eur J Cancer ,  1995, vol.  31A  9(pg.  1425- 1427) Google Scholar CrossRef Search ADS PubMed  36. Silverstein MJ,  Lagios MD,  Craig PH, et al.  A prognostic index for ductal carcinoma in situ of the breast,  Cancer ,  1996, vol.  77  11(pg.  2267- 2274) Google Scholar CrossRef Search ADS PubMed  37. Nakamura S,  Woo C,  Silberman H, et al.  Breast-conserving therapy for ductal carcinoma in situ: a 20-year experience with excision plus radiation therapy,  Am J Surg ,  2002, vol.  184  5(pg.  403- 409) Google Scholar CrossRef Search ADS PubMed  38. Silverstein MJ.  The University of Southern California/Van Nuys prognostic index for ductal carcinoma in situ of the breast,  Am J Surg ,  2003, vol.  186  4(pg.  337- 343) Google Scholar CrossRef Search ADS PubMed  39. Silverstein MJ,  Buchanan C.  Ductal carcinoma in situ: USC/Van Nuys Prognostic Index and the impact of margin status,  Breast ,  2003, vol.  12  6(pg.  457- 471) Google Scholar CrossRef Search ADS PubMed  40. MacDonald HR,  Silverstein MJ,  Mabry H, et al.  Local control in ductal carcinoma in situ treated by excision alone: incremental benefit of larger margins,  Am J Surg ,  2005, vol.  190  4(pg.  521- 525) Google Scholar CrossRef Search ADS PubMed  41. MacDonald HR,  Silverstein MJ,  Lee LA, et al.  Margin width as the sole determinant of local recurrence after breast conservation in patients with ductal carcinoma in situ of the breast,  Am J Surg ,  2006, vol.  192  4(pg.  420- 422) Google Scholar CrossRef Search ADS PubMed  42. Sumner WEIII,  Koniaris LG,  Snell SE, et al.  Results of 23,810 cases of ductal carcinoma-in-situ,  Ann Surg Oncol ,  2007, vol.  14  5(pg.  1638- 1643) Google Scholar CrossRef Search ADS PubMed  43. Szelei-Stevens KA,  Kuske RR,  Yantsos VA, et al.  The influence of young age and positive family history of breast cancer on the prognosis of ductal carcinoma in situ treated by excision with or without radiation therapy or by mastectomy,  Int J Radiat Oncol Biol Phys. ,  2000, vol.  48  4(pg.  943- 949) Google Scholar CrossRef Search ADS PubMed  44. Ellsworth RE,  Ellsworth DL,  Love B, et al.  Correlation of levels and patterns of genomic instability with histological grading of DCIS,  Ann Surg Oncol ,  2007, vol.  14  11(pg.  3070- 3077) Google Scholar CrossRef Search ADS PubMed  45. Cornfield DB,  Palazzo JP,  Schwartz GF, et al.  The prognostic significance of multiple morphologic features and biologic markers in ductal carcinoma in situ of the breast: a study of a large cohort of patients treated with surgery alone,  Cancer ,  2004, vol.  100  11(pg.  2317- 2327) Google Scholar CrossRef Search ADS PubMed  46. Lara JF,  Young SM,  Velilla RE, et al.  The relevance of occult axillary micrometastasis in ductal carcinoma in situ: a clinicopathologic study with long-term follow-up,  Cancer ,  2003, vol.  98  10(pg.  2105- 2113) Google Scholar CrossRef Search ADS PubMed  47. Sahoo S,  Recant WM,  Jaskowiak N, et al.  Defining negative margins in DCIS patients treated with breast conservation therapy: the University of Chicago experience,  Breast J ,  2005, vol.  11  4(pg.  242- 247) Google Scholar CrossRef Search ADS PubMed  48. Rodrigues N,  Carter D,  Dillon D, et al.  Correlation of clinical and pathologic features with outcome in patients with ductal carcinoma in situ of the breast treated with breast-conserving surgery and radiotherapy,  Int J Radiat Oncol Biol Phys. ,  2002, vol.  54  5(pg.  1331- 1335) Google Scholar CrossRef Search ADS PubMed  49. Innos K,  Horn-Ross PL.  Risk of second primary breast cancers among women with ductal carcinoma in situ of the breast,  Breast Cancer Res Treat ,  2008, vol.  111  3(pg.  531- 540) Google Scholar CrossRef Search ADS PubMed  50. Cox CE,  Hyacinthe M,  Gonzalez RJ, et al.  Cytologic evaluation of lumpectomy margins in patients with ductal carcinoma in situ: clinical outcome,  Ann Surg Oncol ,  1997, vol.  4  8(pg.  644- 649) Google Scholar CrossRef Search ADS PubMed  51. Page DL,  Dupont WD,  Rogers LW, et al.  Continued local recurrence of carcinoma 15–25 years after a diagnosis of low grade ductal carcinoma in situ of the breast treated only by biopsy,  Cancer ,  1995, vol.  76  7(pg.  1197- 1200) Google Scholar CrossRef Search ADS PubMed  52. Sanders ME,  Schuyler PA,  Dupont WD, et al.  The natural history of low-grade ductal carcinoma in situ of the breast in women treated by biopsy only revealed over 30 years of long-term follow-up,  Cancer ,  2005, vol.  103  12(pg.  2481- 2484) Google Scholar CrossRef Search ADS PubMed  53. Kepple J,  Henry-Tillman RS,  Klimberg VS, et al.  The receptor expression pattern in ductal carcinoma in situ predicts recurrence,  Am J Surg ,  2006, vol.  192  1(pg.  68- 71) Google Scholar CrossRef Search ADS PubMed  54. Bowers GJ,  Roettger RH,  McAuley CE, et al.  Breast cancer: the military's experience at Wilford Hall USAF Medical Center,  South Med J ,  1990, vol.  83  12(pg.  1413- 1417) Google Scholar CrossRef Search ADS PubMed  55. Badve S,  A’Hern RP,  Ward AM, et al.  Prediction of local recurrence of ductal carcinoma in situ of the breast using five histological classifications: a comparative study with long follow-up,  Hum Pathol ,  1998, vol.  29  9(pg.  915- 923) Google Scholar CrossRef Search ADS PubMed  56. Ward BA,  McKhann CF,  Ravikumar TS.  Ten-year follow-up of breast carcinoma in situ in Connecticut,  Arch Surg ,  1992, vol.  127  12(pg.  1392- 1395) Google Scholar CrossRef Search ADS PubMed  57. Rosner D,  Bedwani RN,  Vana J, et al.  Noninvasive breast carcinoma: results of a national survey by the American College of Surgeons,  Ann Surg ,  1980, vol.  192  2(pg.  139- 147) Google Scholar CrossRef Search ADS PubMed  58. Nekhlyudov L,  Kroenke CH,  Jung I, et al.  Prospective changes in quality of life after ductal carcinoma-in-situ: results from the Nurses’ Health Study,  J Clin Oncol ,  2006, vol.  24  18(pg.  2822- 2827) Google Scholar CrossRef Search ADS PubMed  59. Jeruss JS,  Vicini FA,  Beitsch PD, et al.  Initial outcomes for patients treated on the American Society of Breast Surgeons MammoSite clinical trial for ductal carcinoma-in-situ of the breast,  Ann Surg Oncol ,  2006, vol.  13  7(pg.  967- 976) Google Scholar CrossRef Search ADS PubMed  60. Benitez PR,  Streeter O,  Vicini F, et al.  Preliminary results and evaluation of MammoSite balloon brachytherapy for partial breast irradiation for pure ductal carcinoma in situ: a phase II clinical study,  Am J Surg ,  2006, vol.  192  4(pg.  427- 433) Google Scholar CrossRef Search ADS PubMed  61. Vicini F,  Beitsch PD,  Quiet CA, et al.  Three-year analysis of treatment efficacy, cosmesis, and toxicity by the American Society of Breast Surgeons MammoSite Breast Brachytherapy Registry Trial in patients treated with accelerated partial breast irradiation (APBI),  Cancer ,  2008, vol.  112  4(pg.  758- 766) Google Scholar CrossRef Search ADS PubMed  62. Neuschatz AC,  DiPetrillo T,  Safaii H, et al.  Margin width as a determinant of local control with and without radiation therapy for ductal carcinoma in situ (DCIS) of the breast,  Int J Cancer ,  2001, vol.  96  suppl(pg.  97- 104) Google Scholar CrossRef Search ADS PubMed  63. MacAusland SG,  Hepel JT,  Chong FK, et al.  An attempt to independently verify the utility of the Van Nuys Prognostic Index for ductal carcinoma in situ,  Cancer ,  2007, vol.  110  12(pg.  2648- 2653) Google Scholar CrossRef Search ADS PubMed  64. Habel LA,  Dignam JJ,  Land SR, et al.  Mammographic density and breast cancer after ductal carcinoma in situ,  J Natl Cancer Inst ,  2004, vol.  96  19(pg.  1467- 1472) Google Scholar CrossRef Search ADS PubMed  65. Deutsch M,  Land SR,  Begovic M, et al.  An association between postoperative radiotherapy for primary breast cancer in 11 National Surgical Adjuvant Breast and Bowel Project (NSABP) studies and the subsequent appearance of pleural mesothelioma,  Am J Clin Oncol ,  2007, vol.  30  3(pg.  294- 296) Google Scholar CrossRef Search ADS PubMed  66. Trisal V,  Qian D,  Wagman LD.  Axillary recurrence in DCIs: is axillary lymphadenectomy warranted?,  Am Surg ,  2004, vol.  70  10(pg.  876- 880) Google Scholar PubMed  67. Wong JS,  Kaelin CM,  Troyan SL, et al.  Prospective study of wide excision alone for ductal carcinoma in situ of the breast,  J Clin Oncol ,  2006, vol.  24  7(pg.  1031- 1036) Google Scholar CrossRef Search ADS PubMed  68. Kinne DW,  Petrek JA,  Osborne MP, et al.  Breast carcinoma in situ,  Arch Surg ,  1989, vol.  124  1(pg.  33- 36) Google Scholar CrossRef Search ADS PubMed  69. Liberman L,  Van Zee KJ,  Dershaw DD, et al.  Mammographic features of local recurrence in women who have undergone breast-conserving therapy for ductal carcinoma in situ,  AJR Am J Roentgenol ,  1997, vol.  168  2(pg.  489- 493) Google Scholar CrossRef Search ADS PubMed  70. Hwang ES,  Samli B,  Tran KN, et al.  Volume of resection in patients treated with breast conservation for ductal carcinoma in situ,  Ann Surg Oncol ,  1998, vol.  5  8(pg.  757- 763) Google Scholar CrossRef Search ADS PubMed  71. Van Zee KJ,  Liberman L,  Samli B, et al.  Long term follow-up of women with ductal carcinoma in situ treated with breast-conserving surgery: the effect of age,  Cancer ,  1999, vol.  86  9(pg.  1757- 1767) Google Scholar CrossRef Search ADS PubMed  72. Rudloff U,  Brogi E,  Brockway JP, et al.  Concurrent lobular neoplasia increases the risk of ipsilateral breast cancer recurrence in patients with ductal carcinoma in situ treated with breast-conserving therapy,  Cancer ,  2009, vol.  115  6(pg.  1203- 1214) Google Scholar CrossRef Search ADS PubMed  73. Ben-David MA,  Sturtz DE,  Griffith KA, et al.  Long-term results of conservative surgery and radiotherapy for ductal carcinoma in situ using lung density correction: the University of Michigan experience,  Breast J ,  2007, vol.  13  4(pg.  392- 400) Google Scholar CrossRef Search ADS PubMed  74. Carlson GW,  Page A,  Johnson E, et al.  Local recurrence of ductal carcinoma in situ after skin-sparing mastectomy,  J Am Coll Surg ,  2007, vol.  204  5(pg.  1074- 1078)  discussion 1078–1080 Google Scholar CrossRef Search ADS PubMed  75. Fowble B,  Hanlon AL,  Fein DA, et al.  Results of conservative surgery and radiation for mammographically detected ductal carcinoma in situ (DCIS),  Int J Radiat Oncol Biol Phys. ,  1997, vol.  38  5(pg.  949- 957) Google Scholar CrossRef Search ADS PubMed  76. Harris EE,  Schultz DJ,  Peters CA, et al.  Relationship of family history and outcome after breast conservation therapy in women with ductal carcinoma in situ of the breast,  Int J Radiat Oncol Biol Phys. ,  2000, vol.  48  4(pg.  933- 941) Google Scholar CrossRef Search ADS PubMed  77. Vapiwala N,  Harris E,  Hwang WT, et al.  Long-term outcome for mammographically detected ductal carcinoma in situ managed with breast conservation treatment: prognostic significance of reexcision,  Cancer J ,  2006, vol.  12  1(pg.  25- 32) Google Scholar CrossRef Search ADS PubMed  78. Metz JM,  Solin LJ.  Long-term outcome after postmastectomy radiation therapy for the treatment of ductal carcinoma in situ of the breast,  Am J Clin Oncol ,  1999, vol.  22  3(pg.  215- 217) Google Scholar CrossRef Search ADS PubMed  79. Turaka A,  Freedman GM,  Li T, et al.  Young age is not associated with increased local recurrence for DCIS treated by breast-conserving surgery and radiation,  J Surg Oncol ,  2009, vol.  100  1(pg.  25- 31) Google Scholar CrossRef Search ADS PubMed  80. Mirza NQ,  Vlastos G,  Meric F, et al.  Ductal carcinoma-in-situ: long-term results of breast-conserving therapy,  Ann Surg Oncol ,  2000, vol.  7  9(pg.  656- 664) Google Scholar CrossRef Search ADS PubMed  81. Jhingran A,  Kim JS,  Buchholz TA, et al.  Age as a predictor of outcome for women with DCIS treated with breast-conserving surgery and radiation: The University of Texas M.D. Anderson Cancer Center experience,  Int J Radiat Oncol Biol Phys. ,  2002, vol.  54  3(pg.  804- 809) Google Scholar CrossRef Search ADS PubMed  82. Chagpar A,  Yen T,  Sahin A, et al.  Intraoperative margin assessment reduces reexcision rates in patients with ductal carcinoma in situ treated with breast-conserving surgery,  Am J Surg ,  2003, vol.  186  4(pg.  371- 377) Google Scholar CrossRef Search ADS PubMed  83. Adepoju LJ,  Symmans WF,  Babiera GV, et al.  Impact of concurrent proliferative high-risk lesions on the risk of ipsilateral breast carcinoma recurrence and contralateral breast carcinoma development in patients with ductal carcinoma in situ treated with breast-conserving therapy,  Cancer ,  2006, vol.  106  1(pg.  42- 50) Google Scholar CrossRef Search ADS PubMed  84. Dawood S,  Broglio K,  Gonzalez-Angulo AM, et al.  Development of new cancers in patients with DCIS: the M.D. Anderson experience,  Ann Surg Oncol ,  2008, vol.  15  1(pg.  244- 249) Google Scholar CrossRef Search ADS PubMed  85. Omlin A,  Amichetti M,  Azria D, et al.  Boost radiotherapy in young women with ductal carcinoma in situ: a multicentre, retrospective study of the Rare Cancer Network,  Lancet Oncol ,  2006, vol.  7  8(pg.  652- 656) Google Scholar CrossRef Search ADS PubMed  86. Cutuli B,  Cohen-Solal-Le Nir C,  De Lafontan B, et al.  Ductal carcinoma in situ of the breast results of conservative and radical treatments in 716 patients,  Eur J Cancer ,  2001, vol.  37  18(pg.  2365- 2372) Google Scholar CrossRef Search ADS PubMed  87. de Roos MA,  de Bock GH,  Baas PC, et al.  Compliance with guidelines is related to better local recurrence-free survival in ductal carcinoma in situ,  Br J Cancer ,  2005, vol.  93  10(pg.  1122- 1127) Google Scholar CrossRef Search ADS PubMed  88. Schouten van der Velden AP,  Peeters PH,  Koot VC, et al.  Local recurrences after conservative treatment of ductal carcinoma-in-situ of the breast without radiotherapy: the effect of age,  Ann Surg Oncol ,  2006, vol.  13  7(pg.  990- 998) Google Scholar CrossRef Search ADS PubMed  89. Di Saverio S,  Catena F,  Santini D, et al.  259 Patients with DCIS of the breast applying USC/Van Nuys prognostic index: a retrospective review with long term follow up,  Breast Cancer Res Treat ,  2008, vol.  109  3(pg.  405- 416) Google Scholar CrossRef Search ADS PubMed  90. Schouten van der Velden AP,  van Vugt R,  Van Dijck JA, et al.  Local recurrences after different treatment strategies for ductal carcinoma in situ of the breast: a population-based study in the East Netherlands,  Int J Radiat Oncol Biol Phys. ,  2007, vol.  69  3(pg.  703- 710) Google Scholar CrossRef Search ADS PubMed  91. Fish EB,  Chapman JA,  Miller NA, et al.  Assessment of treatment for patients with primary ductal carcinoma in situ in the breast,  Ann Surg Oncol ,  1998, vol.  5  8(pg.  724- 732) Google Scholar CrossRef Search ADS PubMed  92. Provenzano E,  Hopper JL,  Giles GG, et al.  Biological markers that predict clinical recurrence in ductal carcinoma in situ of the breast,  Eur J Cancer ,  2003, vol.  39  5(pg.  622- 630) Google Scholar CrossRef Search ADS PubMed  93. Meijnen P,  Oldenburg HS,  Peterse JL, et al.  Clinical outcome after selective treatment of patients diagnosed with ductal carcinoma in situ of the breast,  Ann Surg Oncol ,  2008, vol.  15  1(pg.  235- 243) Google Scholar CrossRef Search ADS PubMed  94. Solin LJ,  Fourquet A,  Vicini FA, et al.  Long-term outcome after breast-conservation treatment with radiation for mammographically detected ductal carcinoma in situ of the breast,  Cancer ,  2005, vol.  103  6(pg.  1137- 1146) Google Scholar CrossRef Search ADS PubMed  95. Cutuli B,  Cohen-Solal-le Nir C,  de Lafontan B, et al.  Breast-conserving therapy for ductal carcinoma in situ of the breast: the French Cancer Centers’ experience,  Int J Radiat Oncol Biol Phys. ,  2002, vol.  53  4(pg.  868- 879) Google Scholar CrossRef Search ADS PubMed  96. Stallard S,  Hole DA,  Purushotham AD, et al.  Ductal carcinoma in situ of the breast—among factors predicting for recurrence, distance from the nipple is important,  Eur J Surg Oncol ,  2001, vol.  27  4(pg.  373- 377) Google Scholar CrossRef Search ADS PubMed  97. Boland GP,  Chan KC,  Knox WF, et al.  Value of the Van Nuys Prognostic Index in prediction of recurrence of ductal carcinoma in situ after breast-conserving surgery,  Br J Surg ,  2003, vol.  90  4(pg.  426- 432) Google Scholar CrossRef Search ADS PubMed  98. Asjoe FT,  Altintas S,  Colpaert C, et al.  The value of the Van Nuys Prognostic Index in ductal carcinoma in situ of the breast: a retrospective analysis,  Breast J ,  2007, vol.  13  4(pg.  359- 367) Google Scholar CrossRef Search ADS PubMed  99. Gilleard O,  Goodman A,  Cooper M, et al.  The significance of the Van Nuys prognostic index in the management of ductal carcinoma in situ,  World J Surg Oncol ,  2008, vol.  6 pg.  61  Google Scholar CrossRef Search ADS PubMed  100. Solin LJ,  Kurtz J,  Fourquet A, et al.  Fifteen-year results of breast-conserving surgery and definitive breast irradiation for the treatment of ductal carcinoma in situ of the breast,  J Clin Oncol ,  1996, vol.  14  3(pg.  754- 763) Google Scholar PubMed  101. Warnberg F,  Bergh J,  Zack M, et al.  Risk factors for subsequent invasive breast cancer and breast cancer death after ductal carcinoma in situ: a population-based case-control study in Sweden,  Cancer Epidemiol Biomarkers Prev ,  2001, vol.  10  5(pg.  495- 499) Google Scholar PubMed  102. Tunon-de-Lara C,  de-Mascarel I,  Mac-Grogan G, et al.  Analysis of 676 cases of ductal carcinoma in situ of the breast from 1971 to 1995: diagnosis and treatment—the experience of one institute,  Am J Clin Oncol ,  2001, vol.  24  6(pg.  531- 536) Google Scholar CrossRef Search ADS PubMed  103. Miller NA,  Chapman JA,  Fish EB, et al.  In situ duct carcinoma of the breast: clinical and histopathologic factors and association with recurrent carcinoma,  Breast J ,  2001, vol.  7  5(pg.  292- 302) Google Scholar CrossRef Search ADS PubMed  104. Roka S,  Rudas M,  Taucher S, et al.  High nuclear grade and negative estrogen receptor are significant risk factors for recurrence in DCIS,  Eur J Surg Oncol ,  2004, vol.  30  3(pg.  243- 247) Google Scholar CrossRef Search ADS PubMed  105. Wilson GR,  Cramer A,  Welman A, et al.  Activated c-SRC in ductal carcinoma in situ correlates with high tumour grade, high proliferation and HER2 positivity,  Br J Cancer ,  2006, vol.  95  10(pg.  1410- 1414) Google Scholar CrossRef Search ADS PubMed  106. Ringberg A,  Idvall I,  Ferno M, et al.  Ipsilateral local recurrence in relation to therapy and morphological characteristics in patients with ductal carcinoma in situ of the breast,  Eur J Surg Oncol ,  2000, vol.  26  5(pg.  444- 451) Google Scholar CrossRef Search ADS PubMed  107. Ottesen GL,  Graversen HP,  Blichert-Toft M, et al.  Ductal carcinoma in situ of the female breast. Short-term results of a prospective nationwide study. The Danish Breast Cancer Cooperative Group,  Am J Surg Pathol ,  1992, vol.  16  12(pg.  1183- 1196) Google Scholar CrossRef Search ADS PubMed  108. Bellamy CO,  McDonald C,  Salter DM, et al.  Noninvasive ductal carcinoma of the breast: the relevance of histologic categorization,  Hum Pathol ,  1993, vol.  24  1(pg.  16- 23) Google Scholar CrossRef Search ADS PubMed  109. Holland PA,  Gandhi A,  Knox WF, et al.  The importance of complete excision in the prevention of local recurrence of ductal carcinoma in situ,  Br J Cancer ,  1998, vol.  77  1(pg.  110- 114) Google Scholar CrossRef Search ADS PubMed  110. de Mascarel I,  Bonichon F,  MacGrogan G, et al.  Application of the van nuys prognostic index in a retrospective series of 367 ductal carcinomas in situ of the breast examined by serial macroscopic sectioning: practical considerations,  Breast Cancer Res Treat ,  2000, vol.  61  2(pg.  151- 159) Google Scholar CrossRef Search ADS PubMed  111. Cataliotti L,  Distante V,  Ciatto S, et al.  Intraductal breast cancer: review of 183 consecutive cases,  Eur J Cancer ,  1992, vol.  28A  4–5(pg.  917- 920) Google Scholar CrossRef Search ADS PubMed  112. Bonnier P,  Body G,  Bessenay F, et al.  Prognostic factors in ductal carcinoma in situ of the breast: results of a retrospective study of 575 cases. The Association for Research in Oncologic Gynecology,  Eur J Obstet Gynecol Reprod Biol. ,  1999, vol.  84  1(pg.  27- 35) Google Scholar CrossRef Search ADS PubMed  113. Ottesen GL,  Graversen HP,  Blichert-Toft M, et al.  Carcinoma in situ of the female breast. 10 year follow-up results of a prospective nationwide study,  Breast Cancer Res Treat ,  2000, vol.  62  3(pg.  197- 210) Google Scholar CrossRef Search ADS PubMed  114. Chan KC,  Knox WF,  Sinha G, et al.  Extent of excision margin width required in breast conserving surgery for ductal carcinoma in situ,  Cancer ,  2001, vol.  91  1(pg.  9- 16) Google Scholar CrossRef Search ADS PubMed  115. Douglas-Jones AG,  Logan J,  Morgan JM, et al.  Effect of margins of excision on recurrence after local excision of ductal carcinoma in situ of the breast,  J Clin Pathol ,  2002, vol.  55  8(pg.  581- 586) Google Scholar CrossRef Search ADS PubMed  116. de Roos MA,  de Bock GH,  de Vries J, et al.  p53 overexpression is a predictor of local recurrence after treatment for both in situ and invasive ductal carcinoma of the breast,  J Surg Res. ,  2007, vol.  140  1(pg.  109- 114) Google Scholar CrossRef Search ADS PubMed  117. Solin LJ,  Yeh IT,  Kurtz J, et al.  Ductal carcinoma in situ (intraductal carcinoma) of the breast treated with breast-conserving surgery and definitive irradiation. Correlation of pathologic parameters with outcome of treatment,  Cancer ,  1993, vol.  71  8(pg.  2532- 2542) Google Scholar CrossRef Search ADS PubMed  118. Solin LJ,  McCormick B,  Recht A, et al.  Mammographically detected, clinically occult ductal carcinoma in situ treated with breast-conserving surgery and definitive breast irradiation,  Cancer J Sci Am. ,  1996, vol.  2  3(pg.  158- 165) Google Scholar PubMed  119. Ringberg A,  Anagnostaki L,  Anderson H, et al.  Cell biological factors in ductal carcinoma in situ (DCIS) of the breast-relationship to ipsilateral local recurrence and histopathological characteristics,  Eur J Cancer ,  2001, vol.  37  12(pg.  1514- 1522) Google Scholar CrossRef Search ADS PubMed  120. Barnes NL,  Khavari S,  Boland GP, et al.  Absence of HER4 expression predicts recurrence of ductal carcinoma in situ of the breast,  Clin Cancer Res. ,  2005, vol.  11  6(pg.  2163- 2168) Google Scholar CrossRef Search ADS PubMed  121. Warnberg F,  Amini RM,  Goldman M, et al.  Quality aspects of the tissue microarray technique in a population-based cohort with ductal carcinoma in situ of the breast,  Histopathology ,  2008, vol.  53  6(pg.  642- 649) Google Scholar CrossRef Search ADS PubMed  122. Warnberg F,  Nordgren H,  Bergh J, et al.  Ductal carcinoma in situ of the breast from a population-defined cohort: an evaluation of new histopathological classification systems,  Eur J Cancer ,  1999, vol.  35  5(pg.  714- 720) Google Scholar CrossRef Search ADS PubMed  123. Chuwa EW,  Tan VH,  Tan PH, et al.  Treatment for ductal carcinoma in situ in an Asian population: outcome and prognostic factors,  ANZ J Surg ,  2008, vol.  78  1–2(pg.  42- 48) Google Scholar CrossRef Search ADS PubMed  124. Rakovitch E,  Pignol JP,  Hanna W, et al.  Significance of multifocality in ductal carcinoma in situ: outcomes of women treated with breast-conserving therapy,  J Clin Oncol ,  2007, vol.  25  35(pg.  5591- 5596) Google Scholar CrossRef Search ADS PubMed  125. Nassar H,  Sharafaldeen B,  Visvanathan K, et al.  Ductal carcinoma in situ in African American vs Caucasian American women: analysis of clinicopathologic features and outcome,  Cancer ,  2009, vol.  115  14(pg.  3181- 3188) Google Scholar CrossRef Search ADS PubMed  Funding Agency for Healthcare Research and Quality, US Department of Health and Human Services (290-02-0009). Notes The authors are responsible for its content. Statements in this article should not be construed as endorsement by the Agency for Healthcare Research and Quality or the US Department of Health and Human Services. We thank our technical expert panel members (Amy Degnim, MD; Stephen Edge, MD, FACS; Jay Harris, MD; Kelly Hunt, MD, FACS; Karla Kerlikowske, MS, MD; Lee Tan, MD; and Eric Winer, MD) for their scientific and clinical input; Shilpa Amin, MD, MBsc, FAAFP, our Task Order Officer from AHRQ and Stephanie Chang, MD, Medical Officer at AHRQ, for their guidance throughout the project; and Carmen Allegra, MD, for his consultation. We also thank Chip Cody, MD and Tracy Onega, PhD for reviewing and commenting on the draft; the librarian, Judith Stanke, for her contributions to the literature search; Zhihua Bian, candidate for MS in Biostatistics, and Emily Wang, MPH candidate, for abstracting articles and preparing tables; Karen Rashke, Nancy Russell, and Rebecca Schultz for gathering articles and helping to format tables; and Marilyn Eells for editing and formatting the report. © The Author 2010. Published by Oxford University Press.

Journal

JNCI MonographsOxford University Press

Published: Oct 1, 2010

There are no references for this article.