Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Cellular Senescence in Mouse Hippocampus After Irradiation and the Role of p53 and p21

Cellular Senescence in Mouse Hippocampus After Irradiation and the Role of p53 and p21 Diverse stress signals including irradiation may trigger cellular senescence. We asked whether irradiation induced senescence in mouse hippocampus, and whether p53 or p21 played a role in this response. Following whole-brain irradiation, polymerase chain reaction (PCR) arrays for senescence-associated genes showed increased expression of CDKN1A (p21) and CDKN2A (p19ARF) in mouse hippocampus at 9 weeks. Upregulation of p21 and p19ARF was confirmed using real-time PCR, which also demonstrated increased CDKN2A/p16INKa expression after irradiation. No altered regulation of another 17 senescence-associated genes was observed after irradiation. Immunohistochemistry revealed increased nuclear expression of p16INK4A, p19ARF, p53, p21, phosphorylated p38 (pp38), 4-hydroxy-2-nonenal, and interleukin-6 (IL6) in granule cells of dentate gyrus after irradiation. Increased p16 nuclear immunoreactivity was further observed in type -1 cells, the putative neural stem cells. γ-phosphorylated-histone-2A nuclear foci were also seen in dentate gyrus 9 weeks postirradiation. In nonirradiated mice knockout of the TRP53 or p21 gene, there was increased p16INK4A, p19ARF, and IL6, but not pp38 in dentate gyrus. We conclude that irradiation induces transcript and protein expression profile alterations in mouse dentate gyrus consistent with the senescence phenotype. Absence of p53 or p21 results in increase in baseline expression of senescence markers with no further increase in expression after irradiation. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Neuropathology & Experimental Neurology Oxford University Press

Cellular Senescence in Mouse Hippocampus After Irradiation and the Role of p53 and p21

Loading next page...
 
/lp/oxford-university-press/cellular-senescence-in-mouse-hippocampus-after-irradiation-and-the-1x05NBAHwM

References (96)

Publisher
Oxford University Press
Copyright
© 2017 American Association of Neuropathologists, Inc. All rights reserved.
ISSN
0022-3069
eISSN
1554-6578
DOI
10.1093/jnen/nlx006
pmid
28340115
Publisher site
See Article on Publisher Site

Abstract

Diverse stress signals including irradiation may trigger cellular senescence. We asked whether irradiation induced senescence in mouse hippocampus, and whether p53 or p21 played a role in this response. Following whole-brain irradiation, polymerase chain reaction (PCR) arrays for senescence-associated genes showed increased expression of CDKN1A (p21) and CDKN2A (p19ARF) in mouse hippocampus at 9 weeks. Upregulation of p21 and p19ARF was confirmed using real-time PCR, which also demonstrated increased CDKN2A/p16INKa expression after irradiation. No altered regulation of another 17 senescence-associated genes was observed after irradiation. Immunohistochemistry revealed increased nuclear expression of p16INK4A, p19ARF, p53, p21, phosphorylated p38 (pp38), 4-hydroxy-2-nonenal, and interleukin-6 (IL6) in granule cells of dentate gyrus after irradiation. Increased p16 nuclear immunoreactivity was further observed in type -1 cells, the putative neural stem cells. γ-phosphorylated-histone-2A nuclear foci were also seen in dentate gyrus 9 weeks postirradiation. In nonirradiated mice knockout of the TRP53 or p21 gene, there was increased p16INK4A, p19ARF, and IL6, but not pp38 in dentate gyrus. We conclude that irradiation induces transcript and protein expression profile alterations in mouse dentate gyrus consistent with the senescence phenotype. Absence of p53 or p21 results in increase in baseline expression of senescence markers with no further increase in expression after irradiation.

Journal

Journal of Neuropathology & Experimental NeurologyOxford University Press

Published: Apr 1, 2017

There are no references for this article.