Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Phloem Unloading in Sink Leaves of Nicotiana benthamiana: Comparison of a Fluorescent Solute with a Fluorescent Virus.

Phloem Unloading in Sink Leaves of Nicotiana benthamiana: Comparison of a Fluorescent Solute with... Abstract Using noninvasive imaging techniques, we compared phloem unloading of the membrane-impermeant, fluorescent solute carboxyfluorescein (CF) with that of potato virus X expressing the gene for the green fluorescent protein. Although systemic virus transport took considerably longer to occur than did CF transport, unloading of both solute and virus occurred predominantly from the class III vein network, a highly branched veinal system found between class II veins. The minor veins (classes IV and V) played no role in solute or virus import but were shown to be functional in xylem transport at the time of import by labeling with Texas Red dextran. After virus exit from the class III phloem, the minor veins eventually became infected by cell-to-cell virus movement from the mesophyll. During the sink/source transition, phloem unloading of CF was inhibited from class III veins before the cessation of phloem import through them, suggesting a symplastic isolation of the phloem in class III veins before its involvement in export. The progression of the sink/source transition for carbon was unaffected by the presence of the virus in the sink leaf. However, the virus was unable to cross the sink/source boundary for carbon that was present at the time of viral entry, suggesting a limited capacity for cell-to-cell virus movement into the apical (source) region of the leaf. A functional model of the sink/source transition in Nicotiana benthamiana is presented. This model provides a framework for the analysis of solute and virus movement in leaves. This content is only available as a PDF. © 1997 by American Society of Plant Biologists This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model) http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Plant Cell Oxford University Press

Phloem Unloading in Sink Leaves of Nicotiana benthamiana: Comparison of a Fluorescent Solute with a Fluorescent Virus.

Loading next page...
 
/lp/oxford-university-press/phloem-unloading-in-sink-leaves-of-nicotiana-benthamiana-comparison-of-yyHhPYSFk0

References (49)

Publisher
Oxford University Press
Copyright
Copyright © 2021 American Society of Plant Biologists
ISSN
1040-4651
eISSN
1532-298X
DOI
10.1105/tpc.9.8.1381
Publisher site
See Article on Publisher Site

Abstract

Abstract Using noninvasive imaging techniques, we compared phloem unloading of the membrane-impermeant, fluorescent solute carboxyfluorescein (CF) with that of potato virus X expressing the gene for the green fluorescent protein. Although systemic virus transport took considerably longer to occur than did CF transport, unloading of both solute and virus occurred predominantly from the class III vein network, a highly branched veinal system found between class II veins. The minor veins (classes IV and V) played no role in solute or virus import but were shown to be functional in xylem transport at the time of import by labeling with Texas Red dextran. After virus exit from the class III phloem, the minor veins eventually became infected by cell-to-cell virus movement from the mesophyll. During the sink/source transition, phloem unloading of CF was inhibited from class III veins before the cessation of phloem import through them, suggesting a symplastic isolation of the phloem in class III veins before its involvement in export. The progression of the sink/source transition for carbon was unaffected by the presence of the virus in the sink leaf. However, the virus was unable to cross the sink/source boundary for carbon that was present at the time of viral entry, suggesting a limited capacity for cell-to-cell virus movement into the apical (source) region of the leaf. A functional model of the sink/source transition in Nicotiana benthamiana is presented. This model provides a framework for the analysis of solute and virus movement in leaves. This content is only available as a PDF. © 1997 by American Society of Plant Biologists This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model)

Journal

The Plant CellOxford University Press

Published: Aug 1, 1997

There are no references for this article.