Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Successive switching of antibody isotypes expressed within the lines of a B-cell clone

Successive switching of antibody isotypes expressed within the lines of a B-cell clone An antigen-stimulated B cell can differentiate to form a clone of cells that secrete antibodies with the IgM, IgG1, and IgA isotypes. We have examined the sequence of isotype expression by proliferating cell lines within a clone by directly staining for immunoglobulin in the cytoplasm of clonal daughter cells. All of the cones selected for analysis originally secreted IgM as well as other isotypes, as determined by radioimmunoassay of culture fluids. Cell staining showed that (i) at least 25% of the cells contained more than one isotype, indicating that cells can switch expression of isotypes during clonal expansion; (ii) some cells contained both IgM and IgA without detectable IgG1, and some cells contained both IgM and IgG1 without detectable IgA, suggesting that cells can switch from IgM directly to IgG1 or IgA; and (iii) some cells contained both IgG1 and IgA, indicating that cell lines can undergo two successive switches from IgM to the IgG1 and IgA isotypes. Using serological markers for allotypic determinants on the constant region of heavy chains, we have also shown that heterozygous B cells specific for phosphorylcholine generated clones of cells that secreted IgG1 and IgA antibodies that were derived from the expression of genes on only one parental chromosome. Assuming that the gene coding for the IgA isotype is the last gene in the gene cluster coding for heavy chain isotypes, we have proposed a model of successive, but not necessarily stepwise, switching of isotypes within B-cell lines, leading to the eventual accumulation of cells expressing IgA. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Proceedings of the National Academy of Sciences PNAS

Successive switching of antibody isotypes expressed within the lines of a B-cell clone

Successive switching of antibody isotypes expressed within the lines of a B-cell clone

Proceedings of the National Academy of Sciences , Volume 77 (9): 5424 – Sep 1, 1980

Abstract

An antigen-stimulated B cell can differentiate to form a clone of cells that secrete antibodies with the IgM, IgG1, and IgA isotypes. We have examined the sequence of isotype expression by proliferating cell lines within a clone by directly staining for immunoglobulin in the cytoplasm of clonal daughter cells. All of the cones selected for analysis originally secreted IgM as well as other isotypes, as determined by radioimmunoassay of culture fluids. Cell staining showed that (i) at least 25% of the cells contained more than one isotype, indicating that cells can switch expression of isotypes during clonal expansion; (ii) some cells contained both IgM and IgA without detectable IgG1, and some cells contained both IgM and IgG1 without detectable IgA, suggesting that cells can switch from IgM directly to IgG1 or IgA; and (iii) some cells contained both IgG1 and IgA, indicating that cell lines can undergo two successive switches from IgM to the IgG1 and IgA isotypes. Using serological markers for allotypic determinants on the constant region of heavy chains, we have also shown that heterozygous B cells specific for phosphorylcholine generated clones of cells that secreted IgG1 and IgA antibodies that were derived from the expression of genes on only one parental chromosome. Assuming that the gene coding for the IgA isotype is the last gene in the gene cluster coding for heavy chain isotypes, we have proposed a model of successive, but not necessarily stepwise, switching of isotypes within B-cell lines, leading to the eventual accumulation of cells expressing IgA.

Loading next page...
 
/lp/pnas/successive-switching-of-antibody-isotypes-expressed-within-the-lines-c6DmYYvUMo

References

References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.

Publisher
PNAS
Copyright
Copyright ©2009 by the National Academy of Sciences
ISSN
0027-8424
eISSN
1091-6490
Publisher site
See Article on Publisher Site

Abstract

An antigen-stimulated B cell can differentiate to form a clone of cells that secrete antibodies with the IgM, IgG1, and IgA isotypes. We have examined the sequence of isotype expression by proliferating cell lines within a clone by directly staining for immunoglobulin in the cytoplasm of clonal daughter cells. All of the cones selected for analysis originally secreted IgM as well as other isotypes, as determined by radioimmunoassay of culture fluids. Cell staining showed that (i) at least 25% of the cells contained more than one isotype, indicating that cells can switch expression of isotypes during clonal expansion; (ii) some cells contained both IgM and IgA without detectable IgG1, and some cells contained both IgM and IgG1 without detectable IgA, suggesting that cells can switch from IgM directly to IgG1 or IgA; and (iii) some cells contained both IgG1 and IgA, indicating that cell lines can undergo two successive switches from IgM to the IgG1 and IgA isotypes. Using serological markers for allotypic determinants on the constant region of heavy chains, we have also shown that heterozygous B cells specific for phosphorylcholine generated clones of cells that secreted IgG1 and IgA antibodies that were derived from the expression of genes on only one parental chromosome. Assuming that the gene coding for the IgA isotype is the last gene in the gene cluster coding for heavy chain isotypes, we have proposed a model of successive, but not necessarily stepwise, switching of isotypes within B-cell lines, leading to the eventual accumulation of cells expressing IgA.

Journal

Proceedings of the National Academy of SciencesPNAS

Published: Sep 1, 1980

There are no references for this article.