Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

A comparative analysis of odour treatment technologies in wastewater treatment plants.

A comparative analysis of odour treatment technologies in wastewater treatment plants. Biofiltration, activated sludge diffusion, biotrickling filtration, chemical scrubbing, activated carbon adsorption, regenerative incineration, and a hybrid technology (biotrickling filtration coupled with carbon adsorption) are comparatively evaluated in terms of environmental performance, process economics, and social impact by using the IChemE Sustainability Metrics in the context of odor treatment from wastewater treatment plants (WWTP). This comparative analysis showed that physical/chemical technologies presented higher environmental impacts than their biological counterparts in terms of energy, material and reagents consumption, and hazardous-waste production. Among biological techniques, the main impact was caused by the high water consumption to maintain biological activity (although the use of secondary effluent water can reduce both this environmental impact and operating costs), biofiltration additionally exhibiting high land and material requirements. From a process economics viewpoint, technologies with the highest investments presented the lowest operating costs (biofiltration and biotrickling filtration), which suggested that the Net Present Value should be used as selection criterion. In addition, a significant effect of the economy of scale on the investment costs and odorant concentration on operating cost was observed. The social benefits derived from odor abatement were linked to nuisance reductions in the nearby population and improvements in occupational health within the WWTP, with the hybrid technology exhibiting the highest benefits. On the basis of their low environmental impact, high deodorization performance, and low Net Present Value, biotrickling filtration and AS diffusion emerged as the most promising technologies for odor treatment in WWTP. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Environmental Science & Technology Pubmed

A comparative analysis of odour treatment technologies in wastewater treatment plants.

Environmental Science & Technology , Volume 45 (3): -1093 – Apr 7, 2011

A comparative analysis of odour treatment technologies in wastewater treatment plants.


Abstract

Biofiltration, activated sludge diffusion, biotrickling filtration, chemical scrubbing, activated carbon adsorption, regenerative incineration, and a hybrid technology (biotrickling filtration coupled with carbon adsorption) are comparatively evaluated in terms of environmental performance, process economics, and social impact by using the IChemE Sustainability Metrics in the context of odor treatment from wastewater treatment plants (WWTP). This comparative analysis showed that physical/chemical technologies presented higher environmental impacts than their biological counterparts in terms of energy, material and reagents consumption, and hazardous-waste production. Among biological techniques, the main impact was caused by the high water consumption to maintain biological activity (although the use of secondary effluent water can reduce both this environmental impact and operating costs), biofiltration additionally exhibiting high land and material requirements. From a process economics viewpoint, technologies with the highest investments presented the lowest operating costs (biofiltration and biotrickling filtration), which suggested that the Net Present Value should be used as selection criterion. In addition, a significant effect of the economy of scale on the investment costs and odorant concentration on operating cost was observed. The social benefits derived from odor abatement were linked to nuisance reductions in the nearby population and improvements in occupational health within the WWTP, with the hybrid technology exhibiting the highest benefits. On the basis of their low environmental impact, high deodorization performance, and low Net Present Value, biotrickling filtration and AS diffusion emerged as the most promising technologies for odor treatment in WWTP.

Loading next page...
 
/lp/pubmed/a-comparative-analysis-of-odour-treatment-technologies-in-wastewater-dEu9nmqpwV

References

References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.

ISSN
0013-936X
DOI
10.1021/es103478j
pmid
21275373

Abstract

Biofiltration, activated sludge diffusion, biotrickling filtration, chemical scrubbing, activated carbon adsorption, regenerative incineration, and a hybrid technology (biotrickling filtration coupled with carbon adsorption) are comparatively evaluated in terms of environmental performance, process economics, and social impact by using the IChemE Sustainability Metrics in the context of odor treatment from wastewater treatment plants (WWTP). This comparative analysis showed that physical/chemical technologies presented higher environmental impacts than their biological counterparts in terms of energy, material and reagents consumption, and hazardous-waste production. Among biological techniques, the main impact was caused by the high water consumption to maintain biological activity (although the use of secondary effluent water can reduce both this environmental impact and operating costs), biofiltration additionally exhibiting high land and material requirements. From a process economics viewpoint, technologies with the highest investments presented the lowest operating costs (biofiltration and biotrickling filtration), which suggested that the Net Present Value should be used as selection criterion. In addition, a significant effect of the economy of scale on the investment costs and odorant concentration on operating cost was observed. The social benefits derived from odor abatement were linked to nuisance reductions in the nearby population and improvements in occupational health within the WWTP, with the hybrid technology exhibiting the highest benefits. On the basis of their low environmental impact, high deodorization performance, and low Net Present Value, biotrickling filtration and AS diffusion emerged as the most promising technologies for odor treatment in WWTP.

Journal

Environmental Science & TechnologyPubmed

Published: Apr 7, 2011

There are no references for this article.