Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Adversarial Incomplete Multiview Subspace Clustering Networks.

Adversarial Incomplete Multiview Subspace Clustering Networks. Multiview clustering aims to leverage information from multiple views to improve the clustering performance. Most previous works assumed that each view has complete data. However, in real-world datasets, it is often the case that a view may contain some missing data, resulting in the problem of incomplete multiview clustering (IMC). Previous approaches to this problem have at least one of the following drawbacks: 1) employing shallow models, which cannot well handle the dependence and discrepancy among different views; 2) ignoring the hidden information of the missing data; and 3) being dedicated to the two-view case. To eliminate all these drawbacks, in this work, we present the adversarial IMC (AIMC) framework. In particular, AIMC seeks the common latent representation of multiview data for reconstructing raw data and inferring missing data. The elementwise reconstruction and the generative adversarial network are integrated to evaluate the reconstruction. They aim to capture the overall structure and get a deeper semantic understanding, respectively. Moreover, the clustering loss is designed to obtain a better clustering structure. We explore two variants of AIMC, namely: 1) autoencoder-based AIMC (AAIMC) and 2) generalized AIMC (GAIMC), with different strategies to obtain the multiview common representation. Experiments conducted on six real-world datasets show that AAIMC and GAIMC perform well and outperform the baseline methods. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png IEEE Transactions on Cybernetics Pubmed

Adversarial Incomplete Multiview Subspace Clustering Networks.

IEEE Transactions on Cybernetics , Volume 52 (10): 14 – Sep 22, 2022

Adversarial Incomplete Multiview Subspace Clustering Networks.


Abstract

Multiview clustering aims to leverage information from multiple views to improve the clustering performance. Most previous works assumed that each view has complete data. However, in real-world datasets, it is often the case that a view may contain some missing data, resulting in the problem of incomplete multiview clustering (IMC). Previous approaches to this problem have at least one of the following drawbacks: 1) employing shallow models, which cannot well handle the dependence and discrepancy among different views; 2) ignoring the hidden information of the missing data; and 3) being dedicated to the two-view case. To eliminate all these drawbacks, in this work, we present the adversarial IMC (AIMC) framework. In particular, AIMC seeks the common latent representation of multiview data for reconstructing raw data and inferring missing data. The elementwise reconstruction and the generative adversarial network are integrated to evaluate the reconstruction. They aim to capture the overall structure and get a deeper semantic understanding, respectively. Moreover, the clustering loss is designed to obtain a better clustering structure. We explore two variants of AIMC, namely: 1) autoencoder-based AIMC (AAIMC) and 2) generalized AIMC (GAIMC), with different strategies to obtain the multiview common representation. Experiments conducted on six real-world datasets show that AAIMC and GAIMC perform well and outperform the baseline methods.

Loading next page...
 
/lp/pubmed/adversarial-incomplete-multiview-subspace-clustering-networks-puFodZ0YIj

References

References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.

eISSN
2168-2275
DOI
10.1109/TCYB.2021.3062830
pmid
33750730

Abstract

Multiview clustering aims to leverage information from multiple views to improve the clustering performance. Most previous works assumed that each view has complete data. However, in real-world datasets, it is often the case that a view may contain some missing data, resulting in the problem of incomplete multiview clustering (IMC). Previous approaches to this problem have at least one of the following drawbacks: 1) employing shallow models, which cannot well handle the dependence and discrepancy among different views; 2) ignoring the hidden information of the missing data; and 3) being dedicated to the two-view case. To eliminate all these drawbacks, in this work, we present the adversarial IMC (AIMC) framework. In particular, AIMC seeks the common latent representation of multiview data for reconstructing raw data and inferring missing data. The elementwise reconstruction and the generative adversarial network are integrated to evaluate the reconstruction. They aim to capture the overall structure and get a deeper semantic understanding, respectively. Moreover, the clustering loss is designed to obtain a better clustering structure. We explore two variants of AIMC, namely: 1) autoencoder-based AIMC (AAIMC) and 2) generalized AIMC (GAIMC), with different strategies to obtain the multiview common representation. Experiments conducted on six real-world datasets show that AAIMC and GAIMC perform well and outperform the baseline methods.

Journal

IEEE Transactions on CyberneticsPubmed

Published: Sep 22, 2022

There are no references for this article.