Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Anti-inflammatory activity of guluronate oligosaccharides obtained by oxidative degradation from alginate in lipopolysaccharide-activated murine macrophage RAW 264.7 cells.

Anti-inflammatory activity of guluronate oligosaccharides obtained by oxidative degradation from... Alginate has notably diverse pharmacological activities. The present study investigated the anti-inflammatory activity of the guluronate oligosaccharides prepared by oxidative degradation (GOS-OD) from alginate. GOS-OD significantly attenuated the production of nitric oxide (NO), prostaglandin E2 (PGE2), and reactive oxygen species (ROS), the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2, and the secretion of pro-inflammatory cytokines in lipopolysaccharide (LPS)-activated murine macrophage RAW 264.7 cells. Moreover, GOS-OD potently decreased the binding of LPS to the cell surface and LPS-induced Toll-like receptor 4 (TLR4) and cluster of differentiation (CD) 14 expression. Additionally, GOS-OD could remarkably inhibit the LPS-induced activation of nuclear factor (NF)-κB and mitogen-activated protein (MAP) kinase pathways in RAW 264.7 cells. These results indicate that GOS-OD may reduce the LPS-stimulated inflammatory responses through blocking the activation of NF-κB and MAP kinases, suggesting that GOS-OD may be considered as a potential nutraceutical for inflammation. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Agricultural and Food Chemistry Pubmed

Anti-inflammatory activity of guluronate oligosaccharides obtained by oxidative degradation from alginate in lipopolysaccharide-activated murine macrophage RAW 264.7 cells.

Journal of Agricultural and Food Chemistry , Volume 63 (1): -151 – Aug 14, 2015

Anti-inflammatory activity of guluronate oligosaccharides obtained by oxidative degradation from alginate in lipopolysaccharide-activated murine macrophage RAW 264.7 cells.


Abstract

Alginate has notably diverse pharmacological activities. The present study investigated the anti-inflammatory activity of the guluronate oligosaccharides prepared by oxidative degradation (GOS-OD) from alginate. GOS-OD significantly attenuated the production of nitric oxide (NO), prostaglandin E2 (PGE2), and reactive oxygen species (ROS), the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2, and the secretion of pro-inflammatory cytokines in lipopolysaccharide (LPS)-activated murine macrophage RAW 264.7 cells. Moreover, GOS-OD potently decreased the binding of LPS to the cell surface and LPS-induced Toll-like receptor 4 (TLR4) and cluster of differentiation (CD) 14 expression. Additionally, GOS-OD could remarkably inhibit the LPS-induced activation of nuclear factor (NF)-κB and mitogen-activated protein (MAP) kinase pathways in RAW 264.7 cells. These results indicate that GOS-OD may reduce the LPS-stimulated inflammatory responses through blocking the activation of NF-κB and MAP kinases, suggesting that GOS-OD may be considered as a potential nutraceutical for inflammation.

Loading next page...
 
/lp/pubmed/anti-inflammatory-activity-of-guluronate-oligosaccharides-obtained-by-b00sWrS50e

References (36)

ISSN
0021-8561
DOI
10.1021/jf503548a
pmid
25483391

Abstract

Alginate has notably diverse pharmacological activities. The present study investigated the anti-inflammatory activity of the guluronate oligosaccharides prepared by oxidative degradation (GOS-OD) from alginate. GOS-OD significantly attenuated the production of nitric oxide (NO), prostaglandin E2 (PGE2), and reactive oxygen species (ROS), the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2, and the secretion of pro-inflammatory cytokines in lipopolysaccharide (LPS)-activated murine macrophage RAW 264.7 cells. Moreover, GOS-OD potently decreased the binding of LPS to the cell surface and LPS-induced Toll-like receptor 4 (TLR4) and cluster of differentiation (CD) 14 expression. Additionally, GOS-OD could remarkably inhibit the LPS-induced activation of nuclear factor (NF)-κB and mitogen-activated protein (MAP) kinase pathways in RAW 264.7 cells. These results indicate that GOS-OD may reduce the LPS-stimulated inflammatory responses through blocking the activation of NF-κB and MAP kinases, suggesting that GOS-OD may be considered as a potential nutraceutical for inflammation.

Journal

Journal of Agricultural and Food ChemistryPubmed

Published: Aug 14, 2015

There are no references for this article.