Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Assessment in mice of a synthetic peptide-based vaccine against the sporozoite stage of the human malaria parasite, P. falciparum.

Assessment in mice of a synthetic peptide-based vaccine against the sporozoite stage of the human... The anti-P. falciparum sporozoite vaccine consisting of the synthetic peptide, Ac-Cys-(NANP)3, conjugated to the protein tetanus toxoid (TT), [Ac-Cys-(NANP)3]25-TT, is currently undergoing human trials. The purpose of the present study was to assess various immunological parameters of this vaccine in mice, which have practical implications in humans. Two injections of [Ac-Cys-(NANP)3]25-TT adsorbed to Al(OH)3 were required to elicit a high antibody response against both Ac-Cys-(NANP)3 and TT. The vaccine initiated equivalent Ac-Cys-(NANP)3 priming for a secondary IgG response in 1-week-old and adult mice. Immunization of female mice with TT or [Ac-Cys-(NANP)3]23-TT prior to mating resulted in offspring that passively received anti-Ac-Cys-(NANP)3 and/or anti-TT antibody and that had reduced secondary responses to Ac-Cys-(NANP)3 and TT. Tertiary challenge with vaccine could substantially overcome such inhibition. Preimmunization of adult mice with TT resulted in a specific inhibition of the anti-Ac-Cys-(NANP)3 antibody response that disappeared following tertiary challenge with the vaccine. The conjugate initiated an antibody response against Ac-Cys-(NANP)3 and TT in mice of 16 different genotypes; only very low T-cell proliferative responses to (NANP)3 were observed for some of these strains. Mice injected with (NANP)3 coupled to protein demonstrated a secondary response to Ac-Cys-(NANP)3 when challenged with (NANP)3 on a heterologous carrier, indicating that B-cell priming alone may be sufficient for a secondary antibody response. These results demonstrate that the vaccine has favourable and unfavourable characteristics in mice; the potential for both exists in humans. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Immunology Pubmed

Assessment in mice of a synthetic peptide-based vaccine against the sporozoite stage of the human malaria parasite, P. falciparum.

Immunology , Volume 64 (3): -542 – Oct 3, 1988

Assessment in mice of a synthetic peptide-based vaccine against the sporozoite stage of the human malaria parasite, P. falciparum.


Abstract

The anti-P. falciparum sporozoite vaccine consisting of the synthetic peptide, Ac-Cys-(NANP)3, conjugated to the protein tetanus toxoid (TT), [Ac-Cys-(NANP)3]25-TT, is currently undergoing human trials. The purpose of the present study was to assess various immunological parameters of this vaccine in mice, which have practical implications in humans. Two injections of [Ac-Cys-(NANP)3]25-TT adsorbed to Al(OH)3 were required to elicit a high antibody response against both Ac-Cys-(NANP)3 and TT. The vaccine initiated equivalent Ac-Cys-(NANP)3 priming for a secondary IgG response in 1-week-old and adult mice. Immunization of female mice with TT or [Ac-Cys-(NANP)3]23-TT prior to mating resulted in offspring that passively received anti-Ac-Cys-(NANP)3 and/or anti-TT antibody and that had reduced secondary responses to Ac-Cys-(NANP)3 and TT. Tertiary challenge with vaccine could substantially overcome such inhibition. Preimmunization of adult mice with TT resulted in a specific inhibition of the anti-Ac-Cys-(NANP)3 antibody response that disappeared following tertiary challenge with the vaccine. The conjugate initiated an antibody response against Ac-Cys-(NANP)3 and TT in mice of 16 different genotypes; only very low T-cell proliferative responses to (NANP)3 were observed for some of these strains. Mice injected with (NANP)3 coupled to protein demonstrated a secondary response to Ac-Cys-(NANP)3 when challenged with (NANP)3 on a heterologous carrier, indicating that B-cell priming alone may be sufficient for a secondary antibody response. These results demonstrate that the vaccine has favourable and unfavourable characteristics in mice; the potential for both exists in humans.

Loading next page...
 
/lp/pubmed/assessment-in-mice-of-a-synthetic-peptide-based-vaccine-against-the-jTR7g12Wwv

References

References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.

ISSN
0019-2805
pmid
3044983

Abstract

The anti-P. falciparum sporozoite vaccine consisting of the synthetic peptide, Ac-Cys-(NANP)3, conjugated to the protein tetanus toxoid (TT), [Ac-Cys-(NANP)3]25-TT, is currently undergoing human trials. The purpose of the present study was to assess various immunological parameters of this vaccine in mice, which have practical implications in humans. Two injections of [Ac-Cys-(NANP)3]25-TT adsorbed to Al(OH)3 were required to elicit a high antibody response against both Ac-Cys-(NANP)3 and TT. The vaccine initiated equivalent Ac-Cys-(NANP)3 priming for a secondary IgG response in 1-week-old and adult mice. Immunization of female mice with TT or [Ac-Cys-(NANP)3]23-TT prior to mating resulted in offspring that passively received anti-Ac-Cys-(NANP)3 and/or anti-TT antibody and that had reduced secondary responses to Ac-Cys-(NANP)3 and TT. Tertiary challenge with vaccine could substantially overcome such inhibition. Preimmunization of adult mice with TT resulted in a specific inhibition of the anti-Ac-Cys-(NANP)3 antibody response that disappeared following tertiary challenge with the vaccine. The conjugate initiated an antibody response against Ac-Cys-(NANP)3 and TT in mice of 16 different genotypes; only very low T-cell proliferative responses to (NANP)3 were observed for some of these strains. Mice injected with (NANP)3 coupled to protein demonstrated a secondary response to Ac-Cys-(NANP)3 when challenged with (NANP)3 on a heterologous carrier, indicating that B-cell priming alone may be sufficient for a secondary antibody response. These results demonstrate that the vaccine has favourable and unfavourable characteristics in mice; the potential for both exists in humans.

Journal

ImmunologyPubmed

Published: Oct 3, 1988

There are no references for this article.