Get 20M+ Full-Text Papers For Less Than $1.50/day. Subscribe now for You or Your Team.

Learn More →

Chemical vapor deposition growth of crystalline monolayer MoSe2.

Chemical vapor deposition growth of crystalline monolayer MoSe2. Recently, two-dimensional layers of transition metal dichalcogenides, such as MoS2, WS2, MoSe2, and WSe2, have attracted much attention for their potential applications in electronic and optoelectronic devices. The selenide analogues of MoS2 and WS2 have smaller band gaps and higher electron mobilities, making them more appropriate for practical devices. However, reports on scalable growth of high quality transition metal diselenide layers and studies of their properties have been limited. Here, we demonstrate the chemical vapor deposition (CVD) growth of uniform MoSe2 monolayers under ambient pressure, resulting in large single crystalline islands. The photoluminescence intensity and peak position indicates a direct band gap of 1.5 eV for the MoSe2 monolayers. A back-gated field effect transistor based on MoSe2 monolayer shows n-type channel behavior with average mobility of 50 cm(2) V(-1) s(-1), a value much higher than the 4-20 cm(2) V(-1) s(-1) reported for vapor phase grown MoS2. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png ACS Nano Pubmed

Chemical vapor deposition growth of crystalline monolayer MoSe2.

Chemical vapor deposition growth of crystalline monolayer MoSe2.


Abstract

Recently, two-dimensional layers of transition metal dichalcogenides, such as MoS2, WS2, MoSe2, and WSe2, have attracted much attention for their potential applications in electronic and optoelectronic devices. The selenide analogues of MoS2 and WS2 have smaller band gaps and higher electron mobilities, making them more appropriate for practical devices. However, reports on scalable growth of high quality transition metal diselenide layers and studies of their properties have been limited. Here, we demonstrate the chemical vapor deposition (CVD) growth of uniform MoSe2 monolayers under ambient pressure, resulting in large single crystalline islands. The photoluminescence intensity and peak position indicates a direct band gap of 1.5 eV for the MoSe2 monolayers. A back-gated field effect transistor based on MoSe2 monolayer shows n-type channel behavior with average mobility of 50 cm(2) V(-1) s(-1), a value much higher than the 4-20 cm(2) V(-1) s(-1) reported for vapor phase grown MoS2.

Loading next page...
 
/lp/pubmed/chemical-vapor-deposition-growth-of-crystalline-monolayer-mose2-MIJOnR4sMc

References

References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.

ISSN
1936-0851
DOI
10.1021/nn501175k
pmid
24680389

Abstract

Recently, two-dimensional layers of transition metal dichalcogenides, such as MoS2, WS2, MoSe2, and WSe2, have attracted much attention for their potential applications in electronic and optoelectronic devices. The selenide analogues of MoS2 and WS2 have smaller band gaps and higher electron mobilities, making them more appropriate for practical devices. However, reports on scalable growth of high quality transition metal diselenide layers and studies of their properties have been limited. Here, we demonstrate the chemical vapor deposition (CVD) growth of uniform MoSe2 monolayers under ambient pressure, resulting in large single crystalline islands. The photoluminescence intensity and peak position indicates a direct band gap of 1.5 eV for the MoSe2 monolayers. A back-gated field effect transistor based on MoSe2 monolayer shows n-type channel behavior with average mobility of 50 cm(2) V(-1) s(-1), a value much higher than the 4-20 cm(2) V(-1) s(-1) reported for vapor phase grown MoS2.

Journal

ACS NanoPubmed

Published: Mar 30, 2015

There are no references for this article.