Get 20M+ Full-Text Papers For Less Than $1.50/day. Subscribe now for You or Your Team.

Learn More →

Effect of antibody immobilization strategies on the analytical performance of a surface plasmon resonance-based immunoassay.

Effect of antibody immobilization strategies on the analytical performance of a surface plasmon... Antibody immobilization strategies (random, covalent, orientated and combinations of each) were examined to determine their performance in a surface plasmon resonance-based immunoassay using human fetuin A (HFA) as the model antigen system. The random antibody immobilization strategy selected was based on passive adsorption of anti-HFA antibody on 3-aminopropyltriethoxysilane (APTES)-functionalized gold (Au) chips. The covalent strategy employed covalent crosslinking of anti-HFA antibody on APTES-functionalized chips using 1-ethyl-3-[3-dimethylaminopropyl]carbodiimide (EDC) and sulfo-N-hydroxysuccinimide (SNHS). The orientation strategy used passive adsorption of protein A (PrA) on Au chips, with subsequent binding of the anti-HFA antibody in an orientated fashion via its fragment crystallisable (Fc) region. In the covalent-orientated strategy, PrA was first bound covalently, to the surface, which in turn, then binds the anti-HFA antibody in an orientated manner. Finally, in the most widely used strategy, covalent binding of anti-HFA antibody to carboxymethyldextran (CM5-dextran) was employed. This immobilization strategy gave the highest anti-HFA antibody immobilization density, whereas the highest HFA response was obtained with the covalent-orientated immobilization strategy. Therefore, the covalent-orientated strategy was the best for SPR-based HFA immunoassay and can detect 0.6-20.0 ng/mL of HFA in less than 10 min. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Analyst Pubmed

Effect of antibody immobilization strategies on the analytical performance of a surface plasmon resonance-based immunoassay.

The Analyst , Volume 136 (21): -4424 – Apr 3, 2012

Effect of antibody immobilization strategies on the analytical performance of a surface plasmon resonance-based immunoassay.


Abstract

Antibody immobilization strategies (random, covalent, orientated and combinations of each) were examined to determine their performance in a surface plasmon resonance-based immunoassay using human fetuin A (HFA) as the model antigen system. The random antibody immobilization strategy selected was based on passive adsorption of anti-HFA antibody on 3-aminopropyltriethoxysilane (APTES)-functionalized gold (Au) chips. The covalent strategy employed covalent crosslinking of anti-HFA antibody on APTES-functionalized chips using 1-ethyl-3-[3-dimethylaminopropyl]carbodiimide (EDC) and sulfo-N-hydroxysuccinimide (SNHS). The orientation strategy used passive adsorption of protein A (PrA) on Au chips, with subsequent binding of the anti-HFA antibody in an orientated fashion via its fragment crystallisable (Fc) region. In the covalent-orientated strategy, PrA was first bound covalently, to the surface, which in turn, then binds the anti-HFA antibody in an orientated manner. Finally, in the most widely used strategy, covalent binding of anti-HFA antibody to carboxymethyldextran (CM5-dextran) was employed. This immobilization strategy gave the highest anti-HFA antibody immobilization density, whereas the highest HFA response was obtained with the covalent-orientated immobilization strategy. Therefore, the covalent-orientated strategy was the best for SPR-based HFA immunoassay and can detect 0.6-20.0 ng/mL of HFA in less than 10 min.

Loading next page...
 
/lp/pubmed/effect-of-antibody-immobilization-strategies-on-the-analytical-YVefW3zHlK

References

References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.

ISSN
0003-2654
DOI
10.1039/c1an15325k
pmid
21904732

Abstract

Antibody immobilization strategies (random, covalent, orientated and combinations of each) were examined to determine their performance in a surface plasmon resonance-based immunoassay using human fetuin A (HFA) as the model antigen system. The random antibody immobilization strategy selected was based on passive adsorption of anti-HFA antibody on 3-aminopropyltriethoxysilane (APTES)-functionalized gold (Au) chips. The covalent strategy employed covalent crosslinking of anti-HFA antibody on APTES-functionalized chips using 1-ethyl-3-[3-dimethylaminopropyl]carbodiimide (EDC) and sulfo-N-hydroxysuccinimide (SNHS). The orientation strategy used passive adsorption of protein A (PrA) on Au chips, with subsequent binding of the anti-HFA antibody in an orientated fashion via its fragment crystallisable (Fc) region. In the covalent-orientated strategy, PrA was first bound covalently, to the surface, which in turn, then binds the anti-HFA antibody in an orientated manner. Finally, in the most widely used strategy, covalent binding of anti-HFA antibody to carboxymethyldextran (CM5-dextran) was employed. This immobilization strategy gave the highest anti-HFA antibody immobilization density, whereas the highest HFA response was obtained with the covalent-orientated immobilization strategy. Therefore, the covalent-orientated strategy was the best for SPR-based HFA immunoassay and can detect 0.6-20.0 ng/mL of HFA in less than 10 min.

Journal

The AnalystPubmed

Published: Apr 3, 2012

There are no references for this article.