Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Epigenetics in colorectal cancer.

Epigenetics in colorectal cancer. Malignant transformation is now known to require a series of molecular alterations that disrupt a limited number of pathways including autocrine and paracrine responses to growth factors, cell-cycle control, senescence, motility, and invasion. Studies on hereditary cancers have established genetic changes as the primary driving force for these molecular alterations. Recently, however, it has been recognized that epigenetic changes, defined as clonal changes in gene expression without accompanying changes in primary DNA coding sequence, can also be a driving force in neoplastic transformation, for selected genes, and in specific tumors. DNA methylation within gene promoters and associated alterations in histone acetylation appear primary mediators of epigenetic inheritance in cancer cells. In the large intestine, aberrant DNA methylation arises very early, initially in normal-appearing mucosa, and may be part of the age-related field defect observed in sporadic colorectal neoplasia. Aberrant methylation also contributes to later stages of colon cancer formation and progression through a hypermethylator phenotype termed cytosine phosphoguanosine (CpG) island methylator phenotype (CIMP), which appears to be a defining event in approximately half of all sporadic tumors. In sporadic colon cancer, CIMP has distinct epidemiologic and clinical features and is responsible for most cases of microsatellite instability related to hMLH1 inactivation. The recognition of epigenetic changes as a driving force in colorectal neoplasia opens new areas of research in disease epidemiology, risk assessment, screening, and treatment. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Current opinion in gastroenterology Pubmed

Epigenetics in colorectal cancer.

Current opinion in gastroenterology , Volume 18 (1): 6 – Jun 21, 2007

Epigenetics in colorectal cancer.


Abstract

Malignant transformation is now known to require a series of molecular alterations that disrupt a limited number of pathways including autocrine and paracrine responses to growth factors, cell-cycle control, senescence, motility, and invasion. Studies on hereditary cancers have established genetic changes as the primary driving force for these molecular alterations. Recently, however, it has been recognized that epigenetic changes, defined as clonal changes in gene expression without accompanying changes in primary DNA coding sequence, can also be a driving force in neoplastic transformation, for selected genes, and in specific tumors. DNA methylation within gene promoters and associated alterations in histone acetylation appear primary mediators of epigenetic inheritance in cancer cells. In the large intestine, aberrant DNA methylation arises very early, initially in normal-appearing mucosa, and may be part of the age-related field defect observed in sporadic colorectal neoplasia. Aberrant methylation also contributes to later stages of colon cancer formation and progression through a hypermethylator phenotype termed cytosine phosphoguanosine (CpG) island methylator phenotype (CIMP), which appears to be a defining event in approximately half of all sporadic tumors. In sporadic colon cancer, CIMP has distinct epidemiologic and clinical features and is responsible for most cases of microsatellite instability related to hMLH1 inactivation. The recognition of epigenetic changes as a driving force in colorectal neoplasia opens new areas of research in disease epidemiology, risk assessment, screening, and treatment.

Loading next page...
 
/lp/pubmed/epigenetics-in-colorectal-cancer-eieqojLl4h

References

References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.

ISSN
0267-1379
DOI
10.1097/00001574-200201000-00012
pmid
17031233

Abstract

Malignant transformation is now known to require a series of molecular alterations that disrupt a limited number of pathways including autocrine and paracrine responses to growth factors, cell-cycle control, senescence, motility, and invasion. Studies on hereditary cancers have established genetic changes as the primary driving force for these molecular alterations. Recently, however, it has been recognized that epigenetic changes, defined as clonal changes in gene expression without accompanying changes in primary DNA coding sequence, can also be a driving force in neoplastic transformation, for selected genes, and in specific tumors. DNA methylation within gene promoters and associated alterations in histone acetylation appear primary mediators of epigenetic inheritance in cancer cells. In the large intestine, aberrant DNA methylation arises very early, initially in normal-appearing mucosa, and may be part of the age-related field defect observed in sporadic colorectal neoplasia. Aberrant methylation also contributes to later stages of colon cancer formation and progression through a hypermethylator phenotype termed cytosine phosphoguanosine (CpG) island methylator phenotype (CIMP), which appears to be a defining event in approximately half of all sporadic tumors. In sporadic colon cancer, CIMP has distinct epidemiologic and clinical features and is responsible for most cases of microsatellite instability related to hMLH1 inactivation. The recognition of epigenetic changes as a driving force in colorectal neoplasia opens new areas of research in disease epidemiology, risk assessment, screening, and treatment.

Journal

Current opinion in gastroenterologyPubmed

Published: Jun 21, 2007

There are no references for this article.