Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

FDG PET in the evaluation of the aggressiveness of pulmonary adenocarcinoma: correlation with histopathological features.

FDG PET in the evaluation of the aggressiveness of pulmonary adenocarcinoma: correlation with... 2-[Fluorine-18]fluoro-2-deoxy-d-glucose (FDG) uptake within the primary lesion correlates with survival on positron emission tomography (PET) studies of patients with non-small cell lung cancer. The more metabolically active the tumour, the worse the outcome. The aim of this study was to determine whether a correlation exists between aggressiveness as determined by pathology and the findings of FDG PET in pulmonary adenocarcinoma. Thirty-five patients with 38 adenocarcinomas of the lung were studied. All patients underwent thoracotomy within 4 weeks of the FDG PET study. For semiquantitative analysis, standardized uptake values (SUVs) were calculated. Patients were classified into high SUV (> or = 4.0) and low SUV (<4.0) groups. The degree of FDG uptake (SUVs) in primary lung lesions was correlated with the histopathological features of aggressiveness (pleural involvement, vascular invasion or lymphatic permeation). The mean SUV of aggressive adenocarcinomas (4.36+/-1.94, n = 22) was higher than that of non-aggressive ones (1.53+/-0.88, n = 16) (P < 0.0001). Tumours with a high FDG uptake have a significantly higher likelihood of aggressiveness than those with a low FDG uptake (P = 0.0004). Analysis by the Kaplan-Meier methods revealed that the groups had different prognoses (log-rank test, P = 0.0099). The high SUV group had a significantly worse prognosis. In conclusion, a correlation was seen between aggressiveness as determined by pathology and glucose metabolism as measured by FDG PET in adenocarcinoma of the lung. FDG PET may be used as a non-invasive diagnostic technique in measuring aggressiveness and prognosis in patients with pulmonary adenocarcinoma. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Nuclear medicine communications Pubmed

FDG PET in the evaluation of the aggressiveness of pulmonary adenocarcinoma: correlation with histopathological features.

Nuclear medicine communications , Volume 21 (8): 8 – Feb 15, 2001

FDG PET in the evaluation of the aggressiveness of pulmonary adenocarcinoma: correlation with histopathological features.


Abstract

2-[Fluorine-18]fluoro-2-deoxy-d-glucose (FDG) uptake within the primary lesion correlates with survival on positron emission tomography (PET) studies of patients with non-small cell lung cancer. The more metabolically active the tumour, the worse the outcome. The aim of this study was to determine whether a correlation exists between aggressiveness as determined by pathology and the findings of FDG PET in pulmonary adenocarcinoma. Thirty-five patients with 38 adenocarcinomas of the lung were studied. All patients underwent thoracotomy within 4 weeks of the FDG PET study. For semiquantitative analysis, standardized uptake values (SUVs) were calculated. Patients were classified into high SUV (> or = 4.0) and low SUV (<4.0) groups. The degree of FDG uptake (SUVs) in primary lung lesions was correlated with the histopathological features of aggressiveness (pleural involvement, vascular invasion or lymphatic permeation). The mean SUV of aggressive adenocarcinomas (4.36+/-1.94, n = 22) was higher than that of non-aggressive ones (1.53+/-0.88, n = 16) (P < 0.0001). Tumours with a high FDG uptake have a significantly higher likelihood of aggressiveness than those with a low FDG uptake (P = 0.0004). Analysis by the Kaplan-Meier methods revealed that the groups had different prognoses (log-rank test, P = 0.0099). The high SUV group had a significantly worse prognosis. In conclusion, a correlation was seen between aggressiveness as determined by pathology and glucose metabolism as measured by FDG PET in adenocarcinoma of the lung. FDG PET may be used as a non-invasive diagnostic technique in measuring aggressiveness and prognosis in patients with pulmonary adenocarcinoma.

Loading next page...
 
/lp/pubmed/fdg-pet-in-the-evaluation-of-the-aggressiveness-of-pulmonary-keHZ4DlDao

References

References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.

ISSN
0143-3636
DOI
10.1097/00006231-200008000-00002
pmid
11039452

Abstract

2-[Fluorine-18]fluoro-2-deoxy-d-glucose (FDG) uptake within the primary lesion correlates with survival on positron emission tomography (PET) studies of patients with non-small cell lung cancer. The more metabolically active the tumour, the worse the outcome. The aim of this study was to determine whether a correlation exists between aggressiveness as determined by pathology and the findings of FDG PET in pulmonary adenocarcinoma. Thirty-five patients with 38 adenocarcinomas of the lung were studied. All patients underwent thoracotomy within 4 weeks of the FDG PET study. For semiquantitative analysis, standardized uptake values (SUVs) were calculated. Patients were classified into high SUV (> or = 4.0) and low SUV (<4.0) groups. The degree of FDG uptake (SUVs) in primary lung lesions was correlated with the histopathological features of aggressiveness (pleural involvement, vascular invasion or lymphatic permeation). The mean SUV of aggressive adenocarcinomas (4.36+/-1.94, n = 22) was higher than that of non-aggressive ones (1.53+/-0.88, n = 16) (P < 0.0001). Tumours with a high FDG uptake have a significantly higher likelihood of aggressiveness than those with a low FDG uptake (P = 0.0004). Analysis by the Kaplan-Meier methods revealed that the groups had different prognoses (log-rank test, P = 0.0099). The high SUV group had a significantly worse prognosis. In conclusion, a correlation was seen between aggressiveness as determined by pathology and glucose metabolism as measured by FDG PET in adenocarcinoma of the lung. FDG PET may be used as a non-invasive diagnostic technique in measuring aggressiveness and prognosis in patients with pulmonary adenocarcinoma.

Journal

Nuclear medicine communicationsPubmed

Published: Feb 15, 2001

There are no references for this article.