Get 20M+ Full-Text Papers For Less Than $1.50/day. Subscribe now for You or Your Team.

Learn More →

Grape contribution to wine aroma: production of hexyl acetate, octyl acetate, and benzyl acetate during yeast fermentation is dependent upon precursors in the must.

Grape contribution to wine aroma: production of hexyl acetate, octyl acetate, and benzyl acetate... Wine is a complex consumer product produced predominately by the action of yeast upon grape juice musts. Model must systems have proven ideal for studies of the effects of fermentation conditions on the production of certain wine volatiles. To identify grape-derived precursors to acetate esters, model fermentation systems were developed by spiking precursors into model must at different concentrations. Solid-phase microextraction-gas chromatgraphy mass spectrometry analysis of the fermented wines showed that a variety of grape-derived aliphatic alcohols and aldehydes are precursors to acetate esters. The C6 compounds hexan-1-ol, hexenal, (E)-2-hexen-1-ol, and (E)-2-hexenal are all precursors to hexyl acetate, and octanol and benzyl alcohol are precursors to octyl acetate and benzyl acetate, respectively. In these cases, the postfermentation concentration of an acetate ester increased proportionally with the prefermentation concentration of the respective precursor in the model must. Determining viticultural or winemaking methods to alter the prefermentation concentration of precursor compounds or change the precursor-to-acetate ester ratio will have implications upon the final flavor and aroma of wines. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Agricultural and Food Chemistry Pubmed

Grape contribution to wine aroma: production of hexyl acetate, octyl acetate, and benzyl acetate during yeast fermentation is dependent upon precursors in the must.

Journal of Agricultural and Food Chemistry , Volume 60 (10): -2591 – Jun 29, 2012

Grape contribution to wine aroma: production of hexyl acetate, octyl acetate, and benzyl acetate during yeast fermentation is dependent upon precursors in the must.


Abstract

Wine is a complex consumer product produced predominately by the action of yeast upon grape juice musts. Model must systems have proven ideal for studies of the effects of fermentation conditions on the production of certain wine volatiles. To identify grape-derived precursors to acetate esters, model fermentation systems were developed by spiking precursors into model must at different concentrations. Solid-phase microextraction-gas chromatgraphy mass spectrometry analysis of the fermented wines showed that a variety of grape-derived aliphatic alcohols and aldehydes are precursors to acetate esters. The C6 compounds hexan-1-ol, hexenal, (E)-2-hexen-1-ol, and (E)-2-hexenal are all precursors to hexyl acetate, and octanol and benzyl alcohol are precursors to octyl acetate and benzyl acetate, respectively. In these cases, the postfermentation concentration of an acetate ester increased proportionally with the prefermentation concentration of the respective precursor in the model must. Determining viticultural or winemaking methods to alter the prefermentation concentration of precursor compounds or change the precursor-to-acetate ester ratio will have implications upon the final flavor and aroma of wines.

Loading next page...
 
/lp/pubmed/grape-contribution-to-wine-aroma-production-of-hexyl-acetate-octyl-VPrhW011UG

References (47)

ISSN
0021-8561
DOI
10.1021/jf2042517
pmid
22332880

Abstract

Wine is a complex consumer product produced predominately by the action of yeast upon grape juice musts. Model must systems have proven ideal for studies of the effects of fermentation conditions on the production of certain wine volatiles. To identify grape-derived precursors to acetate esters, model fermentation systems were developed by spiking precursors into model must at different concentrations. Solid-phase microextraction-gas chromatgraphy mass spectrometry analysis of the fermented wines showed that a variety of grape-derived aliphatic alcohols and aldehydes are precursors to acetate esters. The C6 compounds hexan-1-ol, hexenal, (E)-2-hexen-1-ol, and (E)-2-hexenal are all precursors to hexyl acetate, and octanol and benzyl alcohol are precursors to octyl acetate and benzyl acetate, respectively. In these cases, the postfermentation concentration of an acetate ester increased proportionally with the prefermentation concentration of the respective precursor in the model must. Determining viticultural or winemaking methods to alter the prefermentation concentration of precursor compounds or change the precursor-to-acetate ester ratio will have implications upon the final flavor and aroma of wines.

Journal

Journal of Agricultural and Food ChemistryPubmed

Published: Jun 29, 2012

There are no references for this article.