Get 20M+ Full-Text Papers For Less Than $1.50/day. Subscribe now for You or Your Team.

Learn More →

Kinetic modeling of oxidation of antibacterial agents by manganese oxide.

Kinetic modeling of oxidation of antibacterial agents by manganese oxide. Several groups of popular antibacterial agents (i.e., phenols, fluoroquinolones, aromatic N-oxides, and tetracyclines) were demonstrated in earlier studies to be highly susceptible to oxidation by manganese oxides, a common oxidant in soils. However, because of the high complexity, the reaction kinetics were not fully characterized. A mechanism-based kinetic model has now been developed to successfully describe the entire range of kinetic data for a total of 21 compounds of varying structural characteristics (with R2 > 0.93). The model characterizes the reaction kinetics by two independent parameters, the reaction rate constant (k) and total reactive surface sites (S(rxn)). The model fitting indicates that the reaction kinetics of antibacterials with MnO2 are controlled by either the rate of surface precursor complex formation (for tetracyclines) or by the rate of electron transfer within the precursor complex (for phenols, fluoroquinolones, and aromatic N-oxides). The effect of reactant concentration, pH, and cosolutes on the reaction kinetics was evaluated and correlated to kand S(rxn). All the trends are consistent with the proposed rate-limiting steps. This new model improves the ability to quantitatively evaluate the kinetics of oxidative transformation of organic contaminants by manganese oxides in well-defined systems. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Environmental Science & Technology Pubmed

Kinetic modeling of oxidation of antibacterial agents by manganese oxide.

Environmental Science & Technology , Volume 42 (15): -5493 – Dec 24, 2008

Kinetic modeling of oxidation of antibacterial agents by manganese oxide.


Abstract

Several groups of popular antibacterial agents (i.e., phenols, fluoroquinolones, aromatic N-oxides, and tetracyclines) were demonstrated in earlier studies to be highly susceptible to oxidation by manganese oxides, a common oxidant in soils. However, because of the high complexity, the reaction kinetics were not fully characterized. A mechanism-based kinetic model has now been developed to successfully describe the entire range of kinetic data for a total of 21 compounds of varying structural characteristics (with R2 > 0.93). The model characterizes the reaction kinetics by two independent parameters, the reaction rate constant (k) and total reactive surface sites (S(rxn)). The model fitting indicates that the reaction kinetics of antibacterials with MnO2 are controlled by either the rate of surface precursor complex formation (for tetracyclines) or by the rate of electron transfer within the precursor complex (for phenols, fluoroquinolones, and aromatic N-oxides). The effect of reactant concentration, pH, and cosolutes on the reaction kinetics was evaluated and correlated to kand S(rxn). All the trends are consistent with the proposed rate-limiting steps. This new model improves the ability to quantitatively evaluate the kinetics of oxidative transformation of organic contaminants by manganese oxides in well-defined systems.

Loading next page...
 
/lp/pubmed/kinetic-modeling-of-oxidation-of-antibacterial-agents-by-manganese-lxRZ2SGEMc

References

References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.

ISSN
0013-936X
DOI
10.1021/es703143g
pmid
18754474

Abstract

Several groups of popular antibacterial agents (i.e., phenols, fluoroquinolones, aromatic N-oxides, and tetracyclines) were demonstrated in earlier studies to be highly susceptible to oxidation by manganese oxides, a common oxidant in soils. However, because of the high complexity, the reaction kinetics were not fully characterized. A mechanism-based kinetic model has now been developed to successfully describe the entire range of kinetic data for a total of 21 compounds of varying structural characteristics (with R2 > 0.93). The model characterizes the reaction kinetics by two independent parameters, the reaction rate constant (k) and total reactive surface sites (S(rxn)). The model fitting indicates that the reaction kinetics of antibacterials with MnO2 are controlled by either the rate of surface precursor complex formation (for tetracyclines) or by the rate of electron transfer within the precursor complex (for phenols, fluoroquinolones, and aromatic N-oxides). The effect of reactant concentration, pH, and cosolutes on the reaction kinetics was evaluated and correlated to kand S(rxn). All the trends are consistent with the proposed rate-limiting steps. This new model improves the ability to quantitatively evaluate the kinetics of oxidative transformation of organic contaminants by manganese oxides in well-defined systems.

Journal

Environmental Science & TechnologyPubmed

Published: Dec 24, 2008

There are no references for this article.