Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Rightsizing Nanochannels in Reduced Graphene Oxide Membranes by Solvating for Dye Desalination.

Rightsizing Nanochannels in Reduced Graphene Oxide Membranes by Solvating for Dye Desalination. Membranes with high water permeance, near-zero rejection to inorganic salts (such as NaCl and Na2SO4), and almost 100% rejection to organic dyes are of great interest for the dye desalination (the separation of dyes and salts) of textile wastewater. Herein, we prepared reduced graphene oxide membranes in a solvation state (S-rGO) with nanochannel sizes rightly between the salt ions and dye molecules. The S-rGO membrane rejects >99.0% of Direct Red 80 (DR 80) and has almost zero rejection for Na2SO4. By contrast, conventional GO or rGO membranes often have channel sizes smaller than divalent ions (such as SO42-) and thus high rejection for Na2SO4. More interestingly, high salinity in typical dye solutions decreases the channel size in the S-rGO membranes and thus increases the dye rejection, while the Na2SO4 rejection decreases because of the negatively charged surface on GO and the salt screening effect. The membranes also show pure water permeance as high as 80 L m-2 h-1 bar-1, which is about 8 times that of commercial NF 90 membrane and 2 times that of a commercial ultrafiltration membrane (with a molecular weight cutoff of 2000 Da), rendering their promise for practical dye desalination. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Environmental Science & Technology Pubmed

Rightsizing Nanochannels in Reduced Graphene Oxide Membranes by Solvating for Dye Desalination.

Environmental Science & Technology , Volume 52 (21): 7 – Sep 17, 2019

Rightsizing Nanochannels in Reduced Graphene Oxide Membranes by Solvating for Dye Desalination.


Abstract

Membranes with high water permeance, near-zero rejection to inorganic salts (such as NaCl and Na2SO4), and almost 100% rejection to organic dyes are of great interest for the dye desalination (the separation of dyes and salts) of textile wastewater. Herein, we prepared reduced graphene oxide membranes in a solvation state (S-rGO) with nanochannel sizes rightly between the salt ions and dye molecules. The S-rGO membrane rejects >99.0% of Direct Red 80 (DR 80) and has almost zero rejection for Na2SO4. By contrast, conventional GO or rGO membranes often have channel sizes smaller than divalent ions (such as SO42-) and thus high rejection for Na2SO4. More interestingly, high salinity in typical dye solutions decreases the channel size in the S-rGO membranes and thus increases the dye rejection, while the Na2SO4 rejection decreases because of the negatively charged surface on GO and the salt screening effect. The membranes also show pure water permeance as high as 80 L m-2 h-1 bar-1, which is about 8 times that of commercial NF 90 membrane and 2 times that of a commercial ultrafiltration membrane (with a molecular weight cutoff of 2000 Da), rendering their promise for practical dye desalination.

Loading next page...
 
/lp/pubmed/rightsizing-nanochannels-in-reduced-graphene-oxide-membranes-by-gN9V7h7uqv

References

References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.

ISSN
0013-936X
DOI
10.1021/acs.est.8b03661
pmid
30257090

Abstract

Membranes with high water permeance, near-zero rejection to inorganic salts (such as NaCl and Na2SO4), and almost 100% rejection to organic dyes are of great interest for the dye desalination (the separation of dyes and salts) of textile wastewater. Herein, we prepared reduced graphene oxide membranes in a solvation state (S-rGO) with nanochannel sizes rightly between the salt ions and dye molecules. The S-rGO membrane rejects >99.0% of Direct Red 80 (DR 80) and has almost zero rejection for Na2SO4. By contrast, conventional GO or rGO membranes often have channel sizes smaller than divalent ions (such as SO42-) and thus high rejection for Na2SO4. More interestingly, high salinity in typical dye solutions decreases the channel size in the S-rGO membranes and thus increases the dye rejection, while the Na2SO4 rejection decreases because of the negatively charged surface on GO and the salt screening effect. The membranes also show pure water permeance as high as 80 L m-2 h-1 bar-1, which is about 8 times that of commercial NF 90 membrane and 2 times that of a commercial ultrafiltration membrane (with a molecular weight cutoff of 2000 Da), rendering their promise for practical dye desalination.

Journal

Environmental Science & TechnologyPubmed

Published: Sep 17, 2019

There are no references for this article.