Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Sea Cucumber-Inspired Autolytic Hydrogels Exhibiting Tunable High Mechanical Performances, Repairability, and Reusability.

Sea Cucumber-Inspired Autolytic Hydrogels Exhibiting Tunable High Mechanical Performances,... Inspired by stimuli-responsive remarkable changes in consistency (hardening, softening, autolysis) of sea cucumbers, we synthesized a supramolecular polymer(SP) hydrogel directly by photoinitiated aqueous polymerization of N-acryloyl 2-glycine monomer bearing one amide and one carboxyl group on the side chain. The SP hydrogels doped with Ca(2+) demonstrated excellent mechanical properties-high tensile strength (∼1.3 MPa), large stretchability (up to 2300%), high compressive strength (∼10.8 MPa), and good toughness (∼1000 J m(-2)) due to cooperative hydrogen bonding interactions from amide and carboxyl together with Ca(2+) cross-linking. Responding to the change in pH and Ca(2+) concentration, the hydrogels could modulate their network stability and mechanical properties: at pH3.0 and higher Ca(2+) content, the hydrogel formed low swelling network which was stiff and stable; in alkaline or neutral buffer with lower content of or without Ca(2+), the hydrogel formed a highly swollen transient network, which was soft and eventually autolyzed. The reversible multiple noncovalent bonds enabled the hydrogels to achieve thermoplasticity, self-healability, and reusability. Notably, distinct formulations of hydrogels could be welded together under heating to form a gradient hydrogel. In vitro cytotoxicity assay and subcutaneous implantation indicated that the SP hydrogels were biocompatible and autolytic in vivo. The SP hydrogels may find applications as temporary biodevices for intestinal drug delivery or for injectable filling in assisting suturing small vessels. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png ACS Applied Materials & Interfaces Pubmed

Sea Cucumber-Inspired Autolytic Hydrogels Exhibiting Tunable High Mechanical Performances, Repairability, and Reusability.

ACS Applied Materials & Interfaces , Volume 8 (14): -8889 – Jan 5, 2017

Sea Cucumber-Inspired Autolytic Hydrogels Exhibiting Tunable High Mechanical Performances, Repairability, and Reusability.


Abstract

Inspired by stimuli-responsive remarkable changes in consistency (hardening, softening, autolysis) of sea cucumbers, we synthesized a supramolecular polymer(SP) hydrogel directly by photoinitiated aqueous polymerization of N-acryloyl 2-glycine monomer bearing one amide and one carboxyl group on the side chain. The SP hydrogels doped with Ca(2+) demonstrated excellent mechanical properties-high tensile strength (∼1.3 MPa), large stretchability (up to 2300%), high compressive strength (∼10.8 MPa), and good toughness (∼1000 J m(-2)) due to cooperative hydrogen bonding interactions from amide and carboxyl together with Ca(2+) cross-linking. Responding to the change in pH and Ca(2+) concentration, the hydrogels could modulate their network stability and mechanical properties: at pH3.0 and higher Ca(2+) content, the hydrogel formed low swelling network which was stiff and stable; in alkaline or neutral buffer with lower content of or without Ca(2+), the hydrogel formed a highly swollen transient network, which was soft and eventually autolyzed. The reversible multiple noncovalent bonds enabled the hydrogels to achieve thermoplasticity, self-healability, and reusability. Notably, distinct formulations of hydrogels could be welded together under heating to form a gradient hydrogel. In vitro cytotoxicity assay and subcutaneous implantation indicated that the SP hydrogels were biocompatible and autolytic in vivo. The SP hydrogels may find applications as temporary biodevices for intestinal drug delivery or for injectable filling in assisting suturing small vessels.

Loading next page...
 
/lp/pubmed/sea-cucumber-inspired-autolytic-hydrogels-exhibiting-tunable-high-QWPVgyjkWD

References

References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.

ISSN
1944-8244
eISSN
1944-8252
DOI
10.1021/acsami.6b00912
pmid
27014865

Abstract

Inspired by stimuli-responsive remarkable changes in consistency (hardening, softening, autolysis) of sea cucumbers, we synthesized a supramolecular polymer(SP) hydrogel directly by photoinitiated aqueous polymerization of N-acryloyl 2-glycine monomer bearing one amide and one carboxyl group on the side chain. The SP hydrogels doped with Ca(2+) demonstrated excellent mechanical properties-high tensile strength (∼1.3 MPa), large stretchability (up to 2300%), high compressive strength (∼10.8 MPa), and good toughness (∼1000 J m(-2)) due to cooperative hydrogen bonding interactions from amide and carboxyl together with Ca(2+) cross-linking. Responding to the change in pH and Ca(2+) concentration, the hydrogels could modulate their network stability and mechanical properties: at pH3.0 and higher Ca(2+) content, the hydrogel formed low swelling network which was stiff and stable; in alkaline or neutral buffer with lower content of or without Ca(2+), the hydrogel formed a highly swollen transient network, which was soft and eventually autolyzed. The reversible multiple noncovalent bonds enabled the hydrogels to achieve thermoplasticity, self-healability, and reusability. Notably, distinct formulations of hydrogels could be welded together under heating to form a gradient hydrogel. In vitro cytotoxicity assay and subcutaneous implantation indicated that the SP hydrogels were biocompatible and autolytic in vivo. The SP hydrogels may find applications as temporary biodevices for intestinal drug delivery or for injectable filling in assisting suturing small vessels.

Journal

ACS Applied Materials & InterfacesPubmed

Published: Jan 5, 2017

There are no references for this article.