Get 20M+ Full-Text Papers For Less Than $1.50/day. Subscribe now for You or Your Team.

Learn More →

ZAP-70 expression identifies a chronic lymphocytic leukemia subtype with unmutated immunoglobulin genes, inferior clinical outcome, and distinct gene expression profile.

ZAP-70 expression identifies a chronic lymphocytic leukemia subtype with unmutated immunoglobulin... The presence or absence of somatic mutations in the expressed immunoglobulin heavy chain variable regions (IgVH) of chronic lymphocytic leukemia (CLL) cells provides prognostic information. Patients whose leukemic cells express unmutated IgVH regions (Ig-unmutated CLL) often have progressive disease, whereas patients whose leukemic cells express mutated IgVH regions (Ig-mutated CLL) more often have an indolent disease. Given the difficulty in performing IgVH sequencing in a routine diagnostic laboratory, this prognostic distinction is currently unavailable to most patients. Pilot gene expression profiling studies in patients with CLL identified genes that were differentially expressed between the Ig-unmutated and Ig-mutated CLL subtypes. Here, we have profiled an expanded cohort of 107 patients and show that ZAP-70 is the gene that best distinguishes the CLL subtypes. Ig-unmutated CLL expressed ZAP-70 5.54-fold more highly than Ig-mutated CLL (P < 10(-21)). ZAP-70 expression correctly predicted IgVH mutation status in 93% of patients. ZAP-70 expression and IgVH mutation status were comparable in their ability to predict time to treatment requirement following diagnosis. In 7 patients, ZAP-70 expression and IgVH mutation status were discordant: 4 Ig-mutated CLLs had high ZAP-70 expression and 3 Ig-unmutated CLLs had low ZAP-70 expression. Among these ZAP-70 "outliers," those with Ig-mutated CLL had clinical features that are uncharacteristic of this CLL subtype: 2 required early treatment and 2 used a mutated VH3-21 gene, an IgVH gene that has been associated with progressive disease. We developed reverse transcriptase-polymerase chain reaction and immunohistochemical assays for ZAP-70 expression that can be applied clinically and would yield important prognostic information for patients with CLL. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Blood Pubmed

ZAP-70 expression identifies a chronic lymphocytic leukemia subtype with unmutated immunoglobulin genes, inferior clinical outcome, and distinct gene expression profile.

ZAP-70 expression identifies a chronic lymphocytic leukemia subtype with unmutated immunoglobulin genes, inferior clinical outcome, and distinct gene expression profile.


Abstract

The presence or absence of somatic mutations in the expressed immunoglobulin heavy chain variable regions (IgVH) of chronic lymphocytic leukemia (CLL) cells provides prognostic information. Patients whose leukemic cells express unmutated IgVH regions (Ig-unmutated CLL) often have progressive disease, whereas patients whose leukemic cells express mutated IgVH regions (Ig-mutated CLL) more often have an indolent disease. Given the difficulty in performing IgVH sequencing in a routine diagnostic laboratory, this prognostic distinction is currently unavailable to most patients. Pilot gene expression profiling studies in patients with CLL identified genes that were differentially expressed between the Ig-unmutated and Ig-mutated CLL subtypes. Here, we have profiled an expanded cohort of 107 patients and show that ZAP-70 is the gene that best distinguishes the CLL subtypes. Ig-unmutated CLL expressed ZAP-70 5.54-fold more highly than Ig-mutated CLL (P < 10(-21)). ZAP-70 expression correctly predicted IgVH mutation status in 93% of patients. ZAP-70 expression and IgVH mutation status were comparable in their ability to predict time to treatment requirement following diagnosis. In 7 patients, ZAP-70 expression and IgVH mutation status were discordant: 4 Ig-mutated CLLs had high ZAP-70 expression and 3 Ig-unmutated CLLs had low ZAP-70 expression. Among these ZAP-70 "outliers," those with Ig-mutated CLL had clinical features that are uncharacteristic of this CLL subtype: 2 required early treatment and 2 used a mutated VH3-21 gene, an IgVH gene that has been associated with progressive disease. We developed reverse transcriptase-polymerase chain reaction and immunohistochemical assays for ZAP-70 expression that can be applied clinically and would yield important prognostic information for patients with CLL.

Loading next page...
 
/lp/pubmed/zap-70-expression-identifies-a-chronic-lymphocytic-leukemia-subtype-dx0ohciIXg

References

References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.

ISSN
0006-4971
DOI
10.1182/blood-2002-10-3306
pmid
12595313

Abstract

The presence or absence of somatic mutations in the expressed immunoglobulin heavy chain variable regions (IgVH) of chronic lymphocytic leukemia (CLL) cells provides prognostic information. Patients whose leukemic cells express unmutated IgVH regions (Ig-unmutated CLL) often have progressive disease, whereas patients whose leukemic cells express mutated IgVH regions (Ig-mutated CLL) more often have an indolent disease. Given the difficulty in performing IgVH sequencing in a routine diagnostic laboratory, this prognostic distinction is currently unavailable to most patients. Pilot gene expression profiling studies in patients with CLL identified genes that were differentially expressed between the Ig-unmutated and Ig-mutated CLL subtypes. Here, we have profiled an expanded cohort of 107 patients and show that ZAP-70 is the gene that best distinguishes the CLL subtypes. Ig-unmutated CLL expressed ZAP-70 5.54-fold more highly than Ig-mutated CLL (P < 10(-21)). ZAP-70 expression correctly predicted IgVH mutation status in 93% of patients. ZAP-70 expression and IgVH mutation status were comparable in their ability to predict time to treatment requirement following diagnosis. In 7 patients, ZAP-70 expression and IgVH mutation status were discordant: 4 Ig-mutated CLLs had high ZAP-70 expression and 3 Ig-unmutated CLLs had low ZAP-70 expression. Among these ZAP-70 "outliers," those with Ig-mutated CLL had clinical features that are uncharacteristic of this CLL subtype: 2 required early treatment and 2 used a mutated VH3-21 gene, an IgVH gene that has been associated with progressive disease. We developed reverse transcriptase-polymerase chain reaction and immunohistochemical assays for ZAP-70 expression that can be applied clinically and would yield important prognostic information for patients with CLL.

Journal

BloodPubmed

Published: Feb 4, 2004

There are no references for this article.