Access the full text.
Sign up today, get DeepDyve free for 14 days.
Zhang (2009)
10.1016/j.porgcoat.2009.06.012Prog. Org. Coat., 66
Madariaga (2022)
10.1016/j.aca.2022.339837Anal. Chim. Acta, 1209
Bonal (2016)
10.1016/j.gca.2016.06.017Geochim. Cosmochim. Acta, 189
Lazic (2019)
10.3390/s19194269Sensors, 19
Qiao (2015)
10.1080/05704928.2014.911746Appl. Spectrosc. Rev., 50
Lin (2018)
10.1080/10739149.2017.1344702Instrum. Sci. Technol., 46
Moros (2018)
10.1021/acs.analchem.7b04124Anal. Chem., 90
Bocklitz (2013)
10.1021/ac402175cAnal. Chem., 85
Dreyer (2007)
10.1016/j.sab.2007.10.016Spectrochim. Acta. B., 62
Steele (2012)
10.1126/science.1220715Science, 337
Bai (2019)
10.1117/12.2527272, 11058
Xu (2016)
10.1016/j.sab.2015.10.008Spectrochim. Acta. B., 115
Aguilera (2008)
10.1016/j.sab.2008.04.012Spectrochim. Acta. B., 63
Harmon (2021)
10.1016/j.apgeochem.2021.104929Appl. Geochem., 128
Lin (2013)
10.1080/05704928.2012.751028Appl. Spectrosc. Rev., 48
Henry (2019)
10.1016/j.earscirev.2019.102936Earth-Sci. Rev., 198
Busemann (2007)
10.1111/j.1945-5100.2007.tb00581.xMeteorit. Planet. Sci., 42
Beresko (2014)
10.1016/j.sab.2014.06.004Spectrochim. Acta. B., 99
Huang (2020)
10.1039/C9JA00387HJ. Anal. At. Spectrom., 35
Qian (2015)
10.1016/j.surfrep.2015.02.001Surf. Sci. Rep., 70
He (2022)
10.1016/j.sab.2021.106340Spectrochim. Acta. B., 188
Wang (2019)
10.1080/10739149.2019.1608236Instrum. Sci. Technol., 47
Everall (2010)
10.1039/c0an00371aAnalyst, 135
Allegrett (2020)
10.1016/j.talanta.2020.120785Talanta, 212
Lydie (2006)
10.1016/j.gca.2005.12.004Geochim. Cosmochim. Acta, 70
Kmms (2020)
10.1016/j.talanta.2019.120482Talanta, 208
Glaus (2014)
10.1016/j.sab.2014.06.026Spectrochim. Acta. B., 100
Quirico (2005)
10.1016/j.saa.2005.02.015Spectrochim. Acta, A., 61
Maurice (2021)
10.1007/s11214-021-00807-wSpace Sci. Rev., 217
Romppanen (2020)
10.1002/jrs.5622J. Raman Spectrosc., 51
Crupi (2014)
10.1039/C4AY00253AAnal. Methods, 6
Visser (2018)
10.1016/j.gca.2018.08.037Geochim. Cosmochim. Acta, 241
Hoehse (2011)
10.1039/C0JA00038HJ. Anal. At. Spectrom., 26
Havener (2011)
10.1038/asiamat.2011.145NPG Asia Mater., 3
Cristoforetti (2010)
10.1016/j.sab.2009.11.005Spectrochim. Acta, B., 65
Mehmet (2019)
10.1111/maps.13287Meteorit. Planet. Sci., 54
Park (2019)
10.1016/j.saa.2018.08.065Spectrochim. Acta, A., 207
Djenize (2002)
10.1051/0004-6361:20020717Astron. Astrophys., 389
Giakoumaki (2006)
10.1007/s00339-006-3541-0Appl. Phys. A, 83
Matroodi (2014)
10.1007/s00340-014-5929-4Appl. Phys. B, 117
Weimerskirch (2020)
10.1016/j.sab.2020.105916Spectrochim. Acta. B., 172
Hoehse (2009)
10.1016/j.sab.2009.09.004Spectrochim. Acta. B., 64
Lu (2015)
10.1016/j.sab.2015.05.012Spectrochim. Acta. B., 110
Verchovsky (2019)
10.1111/maps.13231Meteorit. Planet. Sci., 54
Vandenabeele (2014)
10.1039/c3cs60263jChem. Soc. Rev., 45
Lednev (2017)
10.1007/s00216-017-0719-6Anal. Bioanal. Chem., 410
Li (2017)
10.1063/1.4975597Rev. Sci. Instrum., 88
Probing elemental and molecular structural information with a high spatial resolution is a key bottleneck in determining unknown minerals in the fields of geology and space exploration. An untraditional confocal-controlled Raman-LIBS hybrid method with high spatial resolution and anti-drift properties has been developed to overcome this challenge. The method is the first to combine Rayleigh/reflected light, LIBS signal, and Raman spectrum to simultaneously measure geometrical topography and elemental and molecular structural information. The hybrid system utilizes real-time focus tracking the performance of Rayleigh/reflected light to achieve accurate spectral measurements. The axial-focusing resolution and lateral resolution for morphological imaging are improved to 15 nm and 600 nm, which improves the anti-drift capability and minimizes the laser ablation size, thereby achieving a high transverse resolution of 9 m, and a high axial resolution of 10 m. As a proof of concept, high-resolution topological and hybrid spectral maps of the Northwest Africa 13323 meteorite have been measured. The fusion of the LIBS and Raman data provides a detailed three-dimensional map of the elementary and compositional distributions of the meteorite. Further analysis of the D and G bands in the Raman map reveals structural information reflecting the thermal metamorphism of the meteorite. The proposed Raman-LIBS hybrid microscope provides valuable information for composition and structure analysis, and it is a powerful tool for studying unknown minerals in the fields of geology and space exploration.
Journal of Analytical Atomic Spectroscopy – Royal Society of Chemistry
Published: Mar 17, 2023
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.