Access the full text.
Sign up today, get DeepDyve free for 14 days.
Collision cell multi-collector inductively coupled plasma mass spectrometry (CC-MC-ICP-MS) has made routine high precision potassium (K) isotope analysis possible using sample-standard bracketing. However, as reported in previous studies, strict concentration match between a sample and bracketing standard (<2% tolerance reported from most labs worldwide) is often required to avoid analytical bias. This small tolerance for concentration mismatch would naturally lead to low analytical efficiency. To better characterize and potentially improve this, we conducted a series of experiments on the hexapole parameters of the Nu Sapphire CC-MC-ICP-MS. The results reveal that RF Ref. (the voltage of the RF alternating current applied to the hexapole rods) is the primary parameter that controls the concentration mismatch effect. For a set RF Bias Ref. value (the potential for the hexapole) of 0.8 V, the optimal RF Ref. value of 1.05 V identified by the flattest part in the 41K/39K ratio versus RF Ref. plot has increased the tolerance for K concentration mismatch to 30% from 4% at a RF Ref. of 1.5 V. The cell gas flow rate is another important parameter and optimal values of 2 sccm and 5 sccm are recommended for He and H2, respectively. A much higher tolerance for concentration mismatch using optimized parameters has greatly improved the efficiency of high precision K isotope analyses using CC-MC-ICP-MS and will open the possibility for in situ K isotopic measurements.
Journal of Analytical Atomic Spectroscopy – Royal Society of Chemistry
Published: Feb 1, 2023
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.