Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Algorithmic content moderation: Technical and political challenges in the automation of platform governance:

Algorithmic content moderation: Technical and political challenges in the automation of platform... As government pressure on major technology companies builds, both firms and legislators are searching for technical solutions to difficult platform governance puzzles such as hate speech and misinformation. Automated hash-matching and predictive machine learning tools – what we define here as algorithmic moderation systems – are increasingly being deployed to conduct content moderation at scale by major platforms for user-generated content such as Facebook, YouTube and Twitter. This article provides an accessible technical primer on how algorithmic moderation works; examines some of the existing automated tools used by major platforms to handle copyright infringement, terrorism and toxic speech; and identifies key political and ethical issues for these systems as the reliance on them grows. Recent events suggest that algorithmic moderation has become necessary to manage growing public expectations for increased platform responsibility, safety and security on the global stage; however, as we demonstrate, these systems remain opaque, unaccountable and poorly understood. Despite the potential promise of algorithms or ‘AI’, we show that even ‘well optimized’ moderation systems could exacerbate, rather than relieve, many existing problems with content policy as enacted by platforms for three main reasons: automated moderation threatens to (a) further increase opacity, making a famously non-transparent set of practices even more difficult to understand or audit, (b) further complicate outstanding issues of fairness and justice in large-scale sociotechnical systems and (c) re-obscure the fundamentally political nature of speech decisions being executed at scale. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Big Data & Society SAGE

Algorithmic content moderation: Technical and political challenges in the automation of platform governance:

Algorithmic content moderation: Technical and political challenges in the automation of platform governance:

Big Data & Society , Volume 7 (1): 1 – Feb 28, 2020

Abstract

As government pressure on major technology companies builds, both firms and legislators are searching for technical solutions to difficult platform governance puzzles such as hate speech and misinformation. Automated hash-matching and predictive machine learning tools – what we define here as algorithmic moderation systems – are increasingly being deployed to conduct content moderation at scale by major platforms for user-generated content such as Facebook, YouTube and Twitter. This article provides an accessible technical primer on how algorithmic moderation works; examines some of the existing automated tools used by major platforms to handle copyright infringement, terrorism and toxic speech; and identifies key political and ethical issues for these systems as the reliance on them grows. Recent events suggest that algorithmic moderation has become necessary to manage growing public expectations for increased platform responsibility, safety and security on the global stage; however, as we demonstrate, these systems remain opaque, unaccountable and poorly understood. Despite the potential promise of algorithms or ‘AI’, we show that even ‘well optimized’ moderation systems could exacerbate, rather than relieve, many existing problems with content policy as enacted by platforms for three main reasons: automated moderation threatens to (a) further increase opacity, making a famously non-transparent set of practices even more difficult to understand or audit, (b) further complicate outstanding issues of fairness and justice in large-scale sociotechnical systems and (c) re-obscure the fundamentally political nature of speech decisions being executed at scale.

Loading next page...
 
/lp/sage/algorithmic-content-moderation-technical-and-political-challenges-in-S8O8uTYtGb

References (90)

Publisher
SAGE
Copyright
Copyright © 2022 by SAGE Publications Ltd, unless otherwise noted. Manuscript content on this site is licensed under Creative Commons Licenses.
ISSN
2053-9517
eISSN
2053-9517
DOI
10.1177/2053951719897945
Publisher site
See Article on Publisher Site

Abstract

As government pressure on major technology companies builds, both firms and legislators are searching for technical solutions to difficult platform governance puzzles such as hate speech and misinformation. Automated hash-matching and predictive machine learning tools – what we define here as algorithmic moderation systems – are increasingly being deployed to conduct content moderation at scale by major platforms for user-generated content such as Facebook, YouTube and Twitter. This article provides an accessible technical primer on how algorithmic moderation works; examines some of the existing automated tools used by major platforms to handle copyright infringement, terrorism and toxic speech; and identifies key political and ethical issues for these systems as the reliance on them grows. Recent events suggest that algorithmic moderation has become necessary to manage growing public expectations for increased platform responsibility, safety and security on the global stage; however, as we demonstrate, these systems remain opaque, unaccountable and poorly understood. Despite the potential promise of algorithms or ‘AI’, we show that even ‘well optimized’ moderation systems could exacerbate, rather than relieve, many existing problems with content policy as enacted by platforms for three main reasons: automated moderation threatens to (a) further increase opacity, making a famously non-transparent set of practices even more difficult to understand or audit, (b) further complicate outstanding issues of fairness and justice in large-scale sociotechnical systems and (c) re-obscure the fundamentally political nature of speech decisions being executed at scale.

Journal

Big Data & SocietySAGE

Published: Feb 28, 2020

Keywords: Platform governance; content moderation; algorithms; artificial intelligence; toxic speech; copyright

There are no references for this article.