Access the full text.
Sign up today, get DeepDyve free for 14 days.
Air pollution is a major source of worry for all living things. India has one of the world’s highest levels of air pollution. Rising population, unplanned growth, increased automotive traffic, stubble burning, industrial waste, fossil fuel combustion, powerplant emissions and a variety of other causes all contribute considerably to air pollution in developing countries. Particulate matter (PM) 2.5 is the most concerning of all air pollutants since it causes major health problems in individuals. Prediction and management of air quality have therefore become critical. Several machine learning algorithms were used in this work to examine dataset results. The results of our work suggest that for future predictions, logistic regression and autoregression can be efficaciously utilised for the analysis and forecasting of levels of PM2.5 in the future. Countries can lower the prevalence of strokes, and chronic and acute respiratory illnesses such as asthma, and lung cancer by reducing air pollution levels.
Asia-Pacific Journal of Management Research and Innovation – SAGE
Published: Sep 1, 2022
Keywords: Pollution; linear regression; machine learning; air quality index (AQI)
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.