Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

A 200-year climate record in Central Europe: implications for agriculture

A 200-year climate record in Central Europe: implications for agriculture The close links of climate, soil conditions, and agricultural productivity have been used in Central Europe for taxation purposes since the eighteenth century. Since agroclimatic conditions are variable, their fluctuations in the past centuries can provide a valuable context for analyzing changes expected in the coming decades. Here, historical agroclimatic conditions and future projections were constructed for key agricultural regions in Central Europe. The agroclimatic zoning method used in this study incorporates (1) the sum of temperatures for days with a mean temperature above 10°C during the frost-free period, (2) the water deficit during the summer period from June to August, defined as the difference between precipitation and reference evapotranspiration, and (3) information regarding the suitability of soil and terrain for agriculture production based on twentieth century soil surveys. Changes in selected agroclimatological indices were also analyzed. To produce a weather series representing climate conditions between 1803 and 2008 over the study area, we used a stochastic weather generator trained on high-quality daily observations from 52 representative meteorological stations during the baseline period from 1961 to 1990. To estimate the extent of agroclimatic zones and the values of selected agroclimatic indices, the parameters of the weather generator were perturbed by the deviations of the temperature and precipitation means from the baseline using a long-term climate series from 1803 to 2008, from Brno. To generate a weather series representing the climate in 2050, we used an approach known as “pattern-scaling” in combination with outputs of three general circulation models. To our knowledge, this is the first study analyzing both continuous fluctuations in agroclimatic conditions over the past 200 years and expected shifts in the coming decades over Central Europe. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Agronomy for Sustainable Development Springer Journals

Loading next page...
 
/lp/springer-journals/a-200-year-climate-record-in-central-europe-implications-for-XiaonnEU3b

References (39)

Publisher
Springer Journals
Copyright
Copyright © 2011 by INRA and Springer Science+Business Media B.V.
Subject
Life Sciences; Sustainable Development; Soil Science & Conservation; Agriculture
ISSN
1774-0746
eISSN
1773-0155
DOI
10.1007/s13593-011-0038-9
Publisher site
See Article on Publisher Site

Abstract

The close links of climate, soil conditions, and agricultural productivity have been used in Central Europe for taxation purposes since the eighteenth century. Since agroclimatic conditions are variable, their fluctuations in the past centuries can provide a valuable context for analyzing changes expected in the coming decades. Here, historical agroclimatic conditions and future projections were constructed for key agricultural regions in Central Europe. The agroclimatic zoning method used in this study incorporates (1) the sum of temperatures for days with a mean temperature above 10°C during the frost-free period, (2) the water deficit during the summer period from June to August, defined as the difference between precipitation and reference evapotranspiration, and (3) information regarding the suitability of soil and terrain for agriculture production based on twentieth century soil surveys. Changes in selected agroclimatological indices were also analyzed. To produce a weather series representing climate conditions between 1803 and 2008 over the study area, we used a stochastic weather generator trained on high-quality daily observations from 52 representative meteorological stations during the baseline period from 1961 to 1990. To estimate the extent of agroclimatic zones and the values of selected agroclimatic indices, the parameters of the weather generator were perturbed by the deviations of the temperature and precipitation means from the baseline using a long-term climate series from 1803 to 2008, from Brno. To generate a weather series representing the climate in 2050, we used an approach known as “pattern-scaling” in combination with outputs of three general circulation models. To our knowledge, this is the first study analyzing both continuous fluctuations in agroclimatic conditions over the past 200 years and expected shifts in the coming decades over Central Europe.

Journal

Agronomy for Sustainable DevelopmentSpringer Journals

Published: Jun 7, 2011

There are no references for this article.