Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

A Brief Introduction to Dispersion RelationsCrossing. Crossed-Channel Singularities

A Brief Introduction to Dispersion Relations: Crossing. Crossed-Channel Singularities [From perturbative QFT it is clear that a generic quantum filed \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi _i(x)$$\end{document} contains both the annihilation operators of a type of particles and the creation operators of the corresponding antiparticles [4].] http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png

A Brief Introduction to Dispersion RelationsCrossing. Crossed-Channel Singularities

Part of the SpringerBriefs in Physics Book Series
Springer Journals — Mar 22, 2019

Loading next page...
 
/lp/springer-journals/a-brief-introduction-to-dispersion-relations-crossing-crossed-channel-F6nsHCC0H0
Publisher
Springer International Publishing
Copyright
© The Author(s), under exclusive licence to Springer Nature Switzerland AG 2019
ISBN
978-3-030-13581-2
Pages
23 –29
DOI
10.1007/978-3-030-13582-9_3
Publisher site
See Chapter on Publisher Site

Abstract

[From perturbative QFT it is clear that a generic quantum filed \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi _i(x)$$\end{document} contains both the annihilation operators of a type of particles and the creation operators of the corresponding antiparticles [4].]

Published: Mar 22, 2019

There are no references for this article.