Access the full text.
Sign up today, get DeepDyve free for 14 days.
We present a generalization of the induced matching theorem of as reported by Bauer and Lesnick (in: Proceedings of the thirtieth annual symposium computational geometry 2014) and use it to prove a generalization of the algebraic stability theorem for $${\mathbb {R}}$$ R -indexed pointwise finite-dimensional persistence modules. Via numerous examples, we show how the generalized algebraic stability theorem enables the computation of rigorous error bounds in the space of persistence diagrams that go beyond the typical formulation in terms of bottleneck (or log bottleneck) distance.
Journal of Applied and Computational Topology – Springer Journals
Published: May 16, 2019
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.