Access the full text.
Sign up today, get DeepDyve free for 14 days.
[The identifiability of a statistical model, or of the parameters that serve as an index for the model, is one of the pillars on which the classical approach to statistical estimation is based. For parametric classes of distributions represented as {Fθ;θ2Θ}, the parameter q is said to be identifiable if different values of the parameter, say θ1 and θ2, give rise to different distributions Fθ1 and Fθ2 of the observable variable X drawn from a distribution in the class. Without identifiability, a classical estimator bq of the unknown parameter q would necessarily be ambiguous, and thus of little use. The data can only help “identify” an equivalence class in which the parameter appears to reside, but they cannot provide a specific numerical value that would play the role of one’s best guess of the true value of the target parameter. In classical statistical estimation theory, the estimation of a nonidentifiable parameter is viewed, quite simply, as an ill-posed problem.]
Published: May 28, 2010
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.