Access the full text.
Sign up today, get DeepDyve free for 14 days.
[As should be evident from the discussion in the three preceding chapters, both the Bayesian and the frequentist approaches to estimation have positive attributes, and yet both also have vulnerabilities that can lead to poor and misleading inferences. The Bayesian paradigm appears to have the advantage in terms of pure logic, both in its foundations and in the methodology that’s built upon them.We have noted, however, that a logically consistent analysis might rightly be judged to be inadequate when it leads to a conclusion that is off the mark. The Frequentist school, on the other hand, has an apparent edge in terms of the notion of “objectivity,” as it proceeds on the basis of a data-driven model and does not utilize “subjective” inputs concerning unknown population parameters whose influence is often difficult to identify and may, in some circumstances, be detrimental. But “objectivity” has been seen to be a two-edged sword, as simple examples make it abundantly clear that subjective inputs can, at times, save an analyst from disaster. Our examination of asymptotic methods in Statistics leads to the conclusion that, under reasonably broad conditions, the two theories of estimation result in solutions that may be described as equivalent (albeit with respect to a frequentist measure of merit). Ease of application has been discussed, and while it is hardly a criterion one would want to place undue weight on when choosing an approach in any serious application, the issue does help us understand why frequentist methods might be the more popular options in certain kinds of applications. In modern computing environments, Bayesian analyses are now feasible in a wide range of models and problems, and the “ease of application” issue might well be considered a draw at this point in time.]
Published: May 28, 2010
Keywords: Prior Distribution; Unbiased Estimator; Frequentist Estimator; Exponential Family; Error Loss
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.