Access the full text.
Sign up today, get DeepDyve free for 14 days.
[Both Bayesian and frequentist methods of inference have qualities which would seem to recommend them for use. They both also have apparent deficiencies. Both schools can find, without great difficulty, reasons to support the position they have chosen as well as reasons to critique the methodologies espoused by the other school. Many professional statisticians see themselves as being in one camp or the other but, in practice, remain open to using either of the methodologies when a particular application seems to call for them. A common example is a Bayesian’s use of the standard methods of linear model theory (regression analysis, for example), because the methodology is so well developed and easily interpretable; he might do so while, at the same time, being quite adamant about the use of the Bayesian approach to estimation and testing in other settings. Similarly, one often encounters staunch frequentists who are happy to use Bayesian methods on occasion (especially those labeled as “objective”) because of the enticing computational tools available for executing the Bayesian approach.]
Published: May 28, 2010
Keywords: Prior Distribution; Bayesian Inference; Bayesian Approach; Frequentist Estimator; Exponential Family
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.