Access the full text.
Sign up today, get DeepDyve free for 14 days.
[The modified structure of Digital Phase-Locked Loop (DPLL)-based systems for dealing with Nakagami-m fading is proposed here. The emphasis of the work is to generate input signal under various fading conditions with certain modulation transmitted through Nakagami-m channels and to evaluate the performance of the proposed DPLL in terms of Bit Error Rate (BER). Statistical characteristics of the faded input signal ar evaluated in terms of Probability Distribution Function (PDF), Level Crossing Rate (LCR) and Average Fade Duration (AFD). A sixth order Least Square Polynomial Fitting (LSPF) block and Roots Approximator (RA) for better phase-frequency detection is implemented as a replacement for Phase Frequency Detector (PFD) and Loop Filter (LF) of a traditional DPLL, which has helped to attain optimum performance of DPLL. The results of simulation of the proposed DPLL with Nakagami-m fading and QPSK modulation show that the proposed method provides better performance than existing systems of similar type.]
Published: Jan 30, 2015
Keywords: Digital phase-locked loop; Numerically controlled oscillator; Nakagami-m fading channels; Least square polynomial fitting filter; Level crossing rate and average fade duration
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.