Access the full text.
Sign up today, get DeepDyve free for 14 days.
This paper proposes a target orbit design scheme based on Pareto optimization for Earth observation satellites with injection error. To avoid high fuel consumption of satellite from injection orbit to original reference orbit, a new target orbit is designed. This target orbit not only requires low fuel consumption, but also can achieve no leakage coverage to the ground. First, the analytical model of sun-synchronous repeating orbit is established under J2\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$J_{{2}}$$\end{document} perturbation. Based on this analytical model, in the neighborhood of injection orbit, the feasible solution set of the target orbit is constructed. This solution set constitutes a discrete search list. Second, a multi-objective optimization problem about fuel consumption and ground coverage is established. As the feasible solutions are constrained in the search list, the optimization of continuous variables in continuous space is transformed into the optimization of finite variables in discrete space, which greatly reduces the optimization time. Meanwhile, a weighted parameter α\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\alpha$$\end{document} is proposed. It represents the decision-maker’s preference for a specific indicator. Then, a preference function of fuel consumption and ground coverage is constructed based on α\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\alpha$$\end{document}. The preference function will help the decision-maker to select the most appropriate solution from the Pareto front. Finally, the above orbital elements are corrected under J4\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$J_{{4}}$$\end{document} perturbation by differential correction. The simulation results show that for satellites with large injection, maneuvering the satellite to the redesigned target orbit can save 97.36% of fuel compared with maneuvering to the original reference orbit.
Aerospace Systems – Springer Journals
Published: Mar 21, 2023
Keywords: Repeat ground track orbit; Search list; Pareto optimality; Multi-objective discrete optimization
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.